
ctrlX CORE: CODESYS SoftMotion

Insights - ctrlX AUTOMATION: Engineering

January 2022

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

1 Introduction

The CODESYS SoftMotion suite includes functionality to support simple point-to-point motion, camming, electronic
gearing, robotic functionality and CNC.

In this note we look at the robotic functionality, focusing on how users may support their own kinematic geometries.

Our example will be a simple parallel kinematic, known from IndraMotion MLC as kinematic type 12:

Figure 1: CODESYS SoftMotion allows users to support their own kinematic geometries. Here we take as an example a simple
parallelogram kinematic from the IndraMotion MLC library.

2 SoftMotion packages

To use CODESYS SoftMotion on the ctrlX AUTOMATION platform, install the associated package using the Package
Manager available in ctrlX PLC Engineering. Installation is straightforward. For details see document Softmotion on
ctrlX CORE HowTo.pdf.

Note that a free adaptor package provided by Bosch Rexroth, ctrlX CODESYS SoftMotion Adaption, is also required.

Page 2 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

Figure 2: Use of CODESYS SoftMotion on the ctrlX AUTOMATION platform requires the two packages shown. Additional
licensing requirements are described in the next section.

3 CODESYS SoftMotion

The CODESYS SoftMotion suite is divided into libraries for basic single axis motion (SM3 Basic), CNC (SM3 CNC)
and robotics (SM3 Robotics). Note that SM3 Basic, in addition to simple point-to-point motion, supports camming
and electronic gearing.

A fourth library, SM3 Transformation, includes interfaces that allow users to provide support for their own kinematic
mechanisms. Standard mechanisms, like SCARA or two- or three-axis delta, are also supported by this library.

The CODESYS SoftMotion Basic functionality is licensed separate from the CNC and Kinematic functionalities1.
Licensing details, as well as some additional software requirements are listed at the end of this document.

When unlicensed, packages will run in demo mode for roughly 120 minutes. Demo mode is fully featured.
1Note that in the use-case described here, both licenses (i.e Basic + CNC/Kinematic) are required.

Page 3 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

3.1 SM3 Robotics

Library SM3 Robotics provides functionality for robot operation. Users will employ SMC GroupPower to apply
power to all axes included in the kinematic group, MC GroupEnable to enable coordinated (”grouped”) motion and
MC MoveLinearAbsolute or MC MoveLinearRelative to move the robot’s tool center point (TCP) along a linear path.
Helper blocks for resetting all group axes (MC GroupReset) and reading the active robot status (MC GroupReadActual-
Position, MC GroupReadActualVelocity, MC GroupReadActualAcceleration) are also provided.

Figure 3: Library SM3 Robotics provides functionality for basic robot operation.

3.2 User-defined kinematics

If a robot geometry is not supported by the standard kinematics available in SM3 Transformation, users may create
a so-called user-defined kinematic. To do this, one defines a function block that includes, at a minimum, methods
defining the forward and inverse transformations of the geometry, as well as some additional methods required for
system integration.

The function block we describe here implements the interfaces MC KIN REF SM3 and ISMKinematicWithInfo2,
both described by this library (SM3 Transformation).

Interface MC KIN REF SM3 requires methods AxesToCartesian and CartesianToAxes as well as property Nu-
mAxes. Interface ISMKinematicWithInfo2 requires methods GetAxisProperties, GetKinematicsName and IsSin-

Page 4 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

Figure 4: To create a user-defined kinematic, begin by defining a function block that implements the required interfaces defined
by library SM3 Transformation. For additional interface options, see CODESYS online help. Note that the attribute pragmas
shown provide information to ctrlX PLC Engineering required for integration into the kinematic selection wizard. This topic will be
discussed later.

gularity. Next we describe methods AxesToCartesian and CartesianToAxes in detail. The requirements of the
additional methods are minimal and are well-described by the CODESYS online help.

Page 5 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

3.2.1 AxesToCartesian

AxesToCartesian defines the forward kinematic transformation. The joint, or axis, positions are provided by variable
a (type AXISPOS REF). From this we calculate the TCP frame, f (type SMC Frame). Note that we return an error
in case the given joint angles do not yield a (real) solution.

The code listing is shown below. Method CircleCircle Intersection, which is used internally to calculate the intersec-
tion points of circles, is described in the appendix.

Figure 5: Code listing for AxesToCartesian. Values L1, L2, L3, L4 and L5 are function block inputs assigned when configuring
the AxisGroup object in the kinematic selection wizard.

Page 6 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

A geometric representation of the calculation is given in the figure below.

T

W

E

TCP

θ1

θ2

L1cos(θ1 + π)

L1sin(θ1 + π)

L5cos(θ2 + 3π/2)

L5sin(θ2 + 3π/2)

T

W

E

TCP

T

W

E

TCP

Figure 6: To calculate the TCP position from the given joint co-ordinates (θ1, θ2), first calculate the positions T, W using standard
sine, cosine functions. Next calculate position E by finding the intersection point of two circles,centered at T and W, with radii
corresponding to the given linkage lengths. Next calculate TCP by considering the similar triangles shown. Note that in case
the robot origin together with points T, E, W form a parallelogram, position E may be determined simply by vector addition. We
consider only the general case here.

An important point is that SoftMotion will call AxesToCartesian as required internally. Users are never required to
call it in the application explicitly. This is also true for the other methods described by interfaces MC KIN REF SM3
and ISMKinematicWithInfo2.

Page 7 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

3.2.2 CartesianToAxes

CartesianToAxes defines the reverse or inverse kinematic transformation. In this case the TCP frame is provided by
variable f. From this we calculate the corresponding joint angles. As before, note that we return an error in case the
given TCP does not yield a (real) solution.

Figure 7: Code listing for CartesianToAxes. Values L1, L2, L3, L4 and L5 are function block inputs assigned when configuring
the AxisGroup object in the kinematic selection wizard.

Page 8 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

A geometric representation of the calculation is given in the figure below.

T

W

E

TCP

T

W

E

TCP

T

W

E

TCP

T

W

E

TCP

atan2(Tx, Ty)− π = θ1

θ
2
=
a
ta
n
2(W

x ,W
y)−

3π
/2

Figure 8: To calculate the joint positions from the given TCP frame (X,Y), first calculate position T by finding the intersection
point of two circles, centered at TCP and the robot origin, with radii corresponding to the given linkage lengths. Calculate position
E by considering the similar triangles shown. Next calculate position W by finding the intersection point of circles centered at E
and the robot origin as shown. Once positions T and W are known, the joint positions may be calculated using the arctangent
in the obvious way. Note that in case the robot origin together with points T, E, W form a parallelogram, position W may be
determined simply by vector addition. We consider only the general case here.

Page 9 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

3.3 reStructuredText

reStructuredText is a simple markup syntax that may be used to format the documentation displayed by ctrlX PLC
Engineering’s Library Manager as well as the kinematic selection wizard.

For example, with the following markup we produce the document shown below.

(*
===================================
Short description
===================================

MC_KIN_TYPE_12_XY implements the forward and reverse transformations for the
parallel mechanism shown below. The mechanism corresponds to IndraMotion
kinematic TYPE 12.

===================================
Functional description
===================================

In the posture shown, links L1, L5 are in their reference (null) position:
JC = (0, 0).

.. image:: @(kin12_xy.png)
:width: 300

IndraMotion kinematic TYPE 12

*)

Page 10 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

Figure 9: Use reStructuredText to create the internal library documentation. Note that extension wkhtmltox.dll is required to build
the documentation and must be configured manually in the ctrlX PLC Engineering installation directory. See CODESYS online
help for more information.

Page 11 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

4 Visualization

In the next sections we briefly describe software used to create a browser-based visualization tool for our robot.
This is provided for information only. The topics described in this section are not required when using SoftMotion.

Figure 10: Real-time visualization tool for our user-defined kinematic created using Blender and animated for the browser with
JavaScript library three.js.

4.1 Blender

Blender is open-source software used to create and render 3D computer models. It claims to support the ”entirety of
the 3D pipeline—modeling, rigging, animation, simulation, rendering, compositing and motion tracking, even video
editing and game creation2.”

Blender’s use here is very limited: We create models of each of the linkages in our kinematic assembly and export
this assembly as a file of type .gltf.

2See https://www.blender.org/about/

Page 12 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

Figure 11: Blender allows users to create 3D models and export these as a set of individual linkages in the gltf format. Note that
each linkage has a canonical pivot point and we move each linkage’s canonical ”origin” to this point.

4.2 Three.js

Three.js is a JavaScript-based WebGL3 framework, allowing users to create high-quality 3D graphical animations in
a web browser.

Key to our implementation here is the ability to import a graphics model of type .gltf using a loader supplied by the
three.js library:

var loader = new THREE.GLTFLoader();

loader.load(’kin12_V0_3.gltf’, function (gltf) {
L_5 = gltf.scene.children[3];
scene.add(L_5);

L_2 = gltf.scene.children[2];
scene.add(L_2);

L_1 = gltf.scene.children[1];
scene.add(L_1);

L_4 = gltf.scene.children[0];
scene.add(L_4);
});

3WebGL, or Web Graphics Library, is an open-source JavaScript API for rendering 2D and 3D graphics within a web browser.

Page 13 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

Additionally, we note that we may position each of the linkages (objects L 1, L 2, L 3, L 4 above, imported as
separate ”children”) within our scene directly using their position and rotation fields. For example:

L_4.position.x = 0.030; //base position in meters
L_4.position.z = 0.020; //base position in meters
L_4.rotation.y = 0.1; //angular position about base in radians

Figure 12: Three.js provides tools for the rendering and animation of sophisticated 3D models. See https://threejs.org/ for more
examples.

Page 14 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

4.3 Python

Our visualization tool requires that the real-time robot position be supplied using a WebSocket. The main Python
routine is shown below. The complete source code, including the configuration files required to build for ctrlX CORE,
is available at https://github.com/bostroemc/webconnector-lite.

def main():
import sys
import logging
import asyncio
import websockets
import requests
import json
import aiohttp
import async_timeout

async def getToken(session, url, user):
with async_timeout.timeout(10):

async with session.post(url, json=user, ssl=False) as response:
temp = json.loads(await response.text())
return str(temp["access_token"])

async def fetchData(session, url, headers):
await asyncio.sleep(0.05)
with async_timeout.timeout(10):

async with session.get(url, headers=headers, ssl=False) as response:
return await response.text()

async def main(websocket, path):
async with aiohttp.ClientSession() as session:

payload = {"name": "boschrexroth", "password": "boschrexroth"}
token = await getToken(session,\
"https://127.0.0.1/identity-manager/api/v1.0/auth/token",\
payload)
headers = {’Authorization’: ’Bearer ’ + token}

while True:
value = await fetchData(session,\
"https://127.0.0.1/automation/api/v1/plc/app/Application/sym/PLC_PRG/dTest",\
headers)
await websocket.send(value)

start_server = websockets.serve(main, "0.0.0.0", 8765)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

if __name__ == ’__main__’:
main()

Page 15 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

5 Appendix

5.1 Intersection of circles

The intersection points of two circles are given by the solution to the following system of equations:

{
(x− x0)

2 + (y − y0)
2 = r20

(x− x1)
2 + (y − y1)

2 = r21
(1)

After expanding the two equations and simplifying, it is a simple matter to show the the system may be reduced to
a single quadratic equation and solved using the quadratic formula. This approach is straightforward, but additional
calculation is required to distinguish between the ”left-” and ”right-hand” solutions.

Instead, we use a more geometric approach and leverage the law of cosines. The main point here is that we produce
the left- or right-hand solution, whichever is required for the given robot posture, in a natural, ”baked-in” way.

(x0, y0)

(x1, y1)
r0

r1

l
θ

(xt, yt)

(x, y)

First we calculate the distance between the circle centers, l.

l =
√
(x1 − x0)2 + (y1 − y0)2 (2)

We assume the the circles intersect and draw the triangle shown in the figure above. By the law of cosines, cos(θ)
may be given in terms of l and the two radii.

cos(θ) =
l2 + r20 − r21

2lr0
(3)

Next we calculate the co-ordinates of the point at the intersection of the first circle with the line segment connecting
the two centers, (xt, yt). This follows directly from considering the two similar right triangles with hypotenuses r0
and l respectively.

(xt − x0, yt − x0) = (
r0
l
(x1 − x0),

r0
l
(y1 − y0)) (4)

Page 16 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

(x0, y0)

(x1, y1)

r0

l

(xt, yt)

(r0/l)(x1 − x0)

(r0/l)(y1 − y0)

Next we rotate (xt, yt) about center of the first circle onto the left-hand solution using the rotation matrix

cos(θ) −sin(θ)

sin(θ) cos(θ)

.

(x− x0)

(y − x0)

 =

cos(θ) −sin(θ)

sin(θ) cos(θ)

(xt − x0)

(yt − x0)

 (5)

If the right-hand solution is desired, we instead rotate by −θ:

 cos(θ) sin(θ)

−sin(θ) cos(θ)

.

An important point here is that we calculate sin(θ) using the Pythagorean identity; we do not need to calculate the
value of the angle itself.

sin(θ) =
√
1− cos2(θ) (6)

Finally, we note without proof that the two circles intersect in exactly two points if and only if the following relation
holds:

0 <
l2 + r20 − r21

2lr0
< 1 (7)

Page 17 of 18

ctrlX CORE: CODESYS SoftMotion Bosch Rexroth AG

5.2 Hardware

Control ctrlX CORE, COREX-C-X3-11-ANNN-21.01-01RS-NN-NN, RM21.07

5.3 Software

Commissioning ctrlX WORKS 1.10.6

ctrlX PLC 1.10.6 (CODESYS 3.5.17.2)

CODESYS packages CODESYS SoftMotion, 4.10.0.0

ctrlX CODESYS SoftMotion Adaption, 1.10.0.3 (pre-release)

ctrlX CORE apps PLC, 1.10.1

EtherCAT Master, 1.10.0

Required licenses CODESYS SoftMotion R911311672 SWL-W-XC*-COSY*SMOT******-NNNN

CODESYS SoftMotion CNC R911311674 SWL-W-XC*-COSY*SMOT*CNC**-NNNN

Page 18 of 18

