CXA_MotionlInterface.library

Einfihrung und Ubersicht

1 CXA_Motioninterface.library
1.1 Einfithrung und Ubersicht

Allgemeines

i

Komponenten des Motionlnterface

Achs-Interface

Die SPS-Bibliotheken CXA_MotionInterface und CXA_MotionInter-
faceUser und das dazugehdrige Programm-Template stellen Funk-
tionen zur Ansteuerung von Achsen und Kinematiken zur Verfu-
gung.

Alternativ zu den Einzel-Funktionen der SPS-Bibliotheken
CXA_Motion bzw. CXA_PLCopen ist das MotionInterface ein fer-
tiger Programmrahmen und stellt ein einfach zu bedienendes Inter-
face fir die Achs- bzw. Kinematik-Funktionalitat zur Verfugung.

Weniger Code und leistungsfahigere Kommandos beschleunigen
die Programmentwicklung von Applikationen.

Zur Nutzung der Bibliothek muss die App rexroth-motion installiert
sein.

CXA_MotionInterface.compiled-library: Basisbibliothek mit den
Basis-Funktionsbausteinen und Basis-Strukturen.

® CXA_MotioninterfaceUser.library: offene Bibliothek mit erwei-
terten Funktionsbausteinen, erweiterten Strukturen, Pro-
grammen und Visualisierungen. Hier sind auch die globalen
Variablen der Interfaces instanziiert. Hier sind Anpassungen /
Erweiterungen der Interfaces durch den Anwender maoglich.

B Programm-Template "ctrIX CORE Axis/Kin-Interface": enthalt
den Aufruf der notwendigen Programme und Beispielcode. Das
Template wird angeboten beim Anlegen eines neuen Projektes
im ctrlX PLC Engineering.

Das Achs-Interface enthalt in der Kontrollstruktur Steuersignale
und Parameter fur die verschiedenen Betriebsarten der Achsen. In
der Statusstruktur werden Istwerte, Statusbits, Diagnoseinformati-
onen und Quittungen fur die Betriebsarten zur Verfligung gestellt.

Die Strukturen werden als Arrays zur Verfligung gestellt. Dies
erlaubt FOR-Schleifen Uber alle Achsen. Die Adressierung der
Achsen erfolgt Gber den Index in den Strukturen. Die Zuordnung
des Achs-Index zum Achs-Namen kann automatisch erfolgen oder
durch den Anwender definiert werden (siehe Programm-Template).

Tab. 1: Zuordnung Anwender-interface zur Achs-Interface-Datenstruktur:

Anwender-Interface Typ Beschreibung

arAxisCtrl[]_gb TE_AXIS_CONTROL_TYPEO1 Steuerungsstruktur inklusive Sollwerte und
Variablen zum Aktivieren der Betriebsarten

arAxisStatus[]_gb TE_AXIS_STATUS TYPEO1 Statusstruktur inklusive Diagnoseinfo,

Quittungen fir die Betriebsarten, Istwerte
und Statusbits

31.07.2020

CXA_MotionInterface.library
Motioninterface - Erstkonfiguration

Kinematik-Interface

y |

Das Kinematik-Interface enthalt in der Kontrollstruktur Steuersig-
nale und Parameter fiir die verschiedenen Betriebsarten der Kine-
matiken. In der Statusstruktur werden Istwerte, Statusbits, Diagno-
seinformationen und Quittungen fiir die Betriebsarten zur
Verfligung gestellt.

Die Strukturen werden als Arrays zur Verfligung gestellt. Dies
erlaubt FOR-Schleifen Uber alle Kinematiken. Die Adressierung der
Kinematiken erfolgt Gber den Index in den Strukturen. Die Zuord-
nung des Kinematik-Index zum Kinematik-Namen kann automa-
tisch erfolgen oder durch den Anwender definiert werden (siehe
Programm-Template).

Das Kinematik-Interface nutzt intern das Achs-Interface. Es ist also
zwingend erforderlich auch das Achs-Interface aufzurufen.

Tab. 2: Zuordnung Anwender-interface zur Kinematfik-Interface-Datenstruktur:

Anwender-Interface Typ Beschreibung
arKinCtri[]_gb TE_KINEMATICS_CON- Steuerungsstruktur inklusive Sollwerte und
TROL_TYPEO1 Variablen zum Aktivieren der Betriebsarten
arKinStatus[]_gb TE_KINEMA- Statusstruktur inklusive Diagnoseinfo,
TICS_STATUS TYPEO1 Quittungen flr die Betriebsarten, Istwerte
und Statusbits
IMC-Interface Das IMC-Interface (Interface-Motion-Control) enthalt in der Kon-

y |

trollstruktur Steuersignale fur die App rexroth-motion. In der Status-
struktur werden Statusbits und Diagnoseinformationen der App
rexroth-motion zur Verflgung gestellt.

Das IMC-Interface wird intern von Achs- und Kinematik-Interface
genutzt um bei Erreichen des Zustandes "Running" die Initialisie-
rung zu starten.

Das Programm MB_Imcinterface wird bereits vom Achs-Interface
intern aufgerufen. Ein zusétzlicher Aufruf ist nur notwendig, wenn
das IMC-Interface ohne Achs-Interface genutzt wird.

Tab. 3: Zuordnung Anwender-interface zur IMC-Inferface-Datenstruktur:

Anwender-Interface Typ Beschreibung

ImcCitrl MB_IMC_CONTROL_TYPEO1 Steuerungsstruktur zur Vorgabe des
Motion Modus und zum Fehler lI6schen

ImcStatus MB_IMC_STATUS_TYPEO1 Statusstruktur mit dem aktuellen Motion

Modus und Diagnoseinformationen

1.2 MotionInterface - Erstkonfiguration

Bevor die Funktionalitat des MotionInterfaces benutzt werden
kann, muss dieses zuerst initialisiert werden. Die folgenden
Schritte aktivieren das Achs- und Kinematik-Interface in ctrlX PLC
Engineering.

31.07.2020

CXA_MotionInterface.library

Motioninterface - Erstkonfiguration

@ \Viele der in diesem Abschnitt beschriebenen Schritte sind schon

im Programm-Template "ctriX CORE Axis/Kin-Interface” enthalten.
Dieses Template kann in ctriX PLC Engineering importiert und als
Leitfaden fiir neue Projekte benutzt werden. Bei Verwendung der
Vorlage "ctriX CORE Axis/Kin-Interface” ist das Handling des
Achs- und Kinematik-Interface inklusive moglicher Erweiterungen
durch den Anwender komplett lauffahig ausprogrammiert.

Erste Schritte bei Verwendung des Beispielprojektes "ctrlX CORE
Axis/Kin-Interface" .

1.) ImctriX PLC Engineering ein neues Projekt anlegen. Im
Dialog das Template "ctrIX CORE Axis/Kin-Interface" aus-
wahlen. Weitere Schritte der Dialogabfolge fertigstellen.

2.) Das eingeflgte Programm ist auf einer "ctrlX COREvirtual"
kompilett lauffahig. Fur die Aktualisierung der "ctrlX COREvir-
tual" oder der Nutzung realer Hardware rechte Maustaste auf
das Device und "Gerat aktualisieren". Gewinschte Steue-
rung "ctriX CORE" oder "ctrIX COREvirtual" auswahlen.

3.) Doppelklick auf das Device und die Kommunikationseinstel-
lungen vornehmen. Sie kdnnen die SPS-Applikation ein-
loggen, starten und Uber die Visualisierungen "Overvie-
wAxes" bzw. "OverviewKinematics" die Funktion testen. Die
Zuordnung AchsName <> Achsindex bzw. KinName <> Kin-
Index erfolgt per Default automatisch.

4.) Im Bibliotheksverwalter die Bibliothek CXA_Motioninterfa-
ceUser auswahlen und die Biblitotheksparameter
"MOTIF_CONFIG" 6ffnen. Hier kdnnen Sie die Arrays an die
Anzahl lhrer Achsen bzw. Kinematiken anpassen. Wahlen
Sie einen anderen Konfigurationsmodus aus, um die Zuord-
nung AchsName <> AchsIndex bzw. KinName <> Kinlndex
selbst zu definieren.

5.) Benutzen Sie nun arAxisCtrl_gb[], arAxisStatus_gb[],
arKinCtrl_gb[], arKinStatus_gb[] zum Programmieren lhrer
Applikation.

Erste Schritte bei Nutzung eines eigenen Programmes.

1.) Offnen Sie den Bibliotheksverwalter im Projektbaum unter
"Logic->Application" und fligen Sie die Bibliotheken
CXA_MotionInterface.compiled-library und CXA_Motioninter-
faceUser.library zum aktuellen ctrlX PLC Engineering Projekt
hinzu.

2.), Rufen Sie z.B. im PIcProg die Programme TE_AXxisInterface-
MainProg und TE_KinInterfaceMainProg aus der Bibliothek
CXA_MotionlnterfaceUser.library auf. In der Dokumentation
der Bibliothek CXA_MotioninterfaceUser.library ist entsprech-
ender Beispielcode hinterlegt im Programm "KinInterfa-
ceUser/_Examples/Example_KinlfApplicationPart". Alternativ
im ctrIX PLC Engineering ein neues Projekt mit dem Tem-
plate "ctrIX CORE Axis/Kin-Interface" anlegen und mit
Export/Import die benétigten Teile in das eigene Programm
Ubertragen.

31.07.2020

CXA_MotionInterface.library
Achs-Interface

3.) Im Bibliotheksverwalter die Bibliothek CXA_Motioninterfa-
ceUser auswahlen und die Biblitotheksparameter
"MOTIF_CONFIG" 6ffnen. Hier kdnnen Sie die Arrays an die
Anzahl lhrer Achsen bzw. Kinematiken anpassen. Wahlen
Sie einen anderen Konfigurationsmodus aus, um die Zuord-
nung Achsname <> Achsindex bzw. KinName <> KinIndex
selbst zu definieren.

4.) Optional: wenn sie zur Inbetriebnahme der Achsen die mitge-
lieferten Visualisierungen nutzen méchten, legen Sie eine
neue Visualisierung mit dem Namen "OverviewAxes" an.

m Oben legen Sie einen neuen Frame an und wahlen daflr
die Visualisierung "OverviewAxesHeader" aus der Biblio-
thek CXA_MotioninterfaceUser.library aus.

® Darunter fur jede Achse einen Frame "OverviewOneAxis"
und Ubergeben als "m_Input_AxisIndex" den jeweiligen
AchslIndex.

|.°"
v

Optional: wenn sie zur Inbetriebnahme der Kinematiken die
mitgelieferten Visualisierungen nutzen mochten, legen Sie
eine neue Visualisierung mit dem Namen "OverviewKinema-
tics" an.

® Oben legen Sie einen neuen Frame an und wahlen dafir
die Visualisierung "OverviewKinematicsHeader" aus der
Bibliothek CXA_MotioninterfaceUser.library aus.

® Darunter fur jede Achse einen Frame "OverviewOneKine-
matics" und Ubergeben als "m_Input_Kinindex" den jewei-
ligen Kinlndex.

6.) Benutzen Sie nun arAxisCtrl_gb[], arAxisStatus_gb[],
arKinCtrl_gb[], arKinStatus_gb[] zum Programmieren lhrer
Applikation.

1.3 Achs-Interface
1.3.1 Einfiihrung und Ubersicht

Das Achs-Interface blindelt und erweitert PLCopen-Bewegungs-
funktionsbausteine und stellt ein einfach zu bedienendes Interface
fur die Antriebsfunktionalitat zur Verfligung.

Weniger Code und leistungsfahigere Kommandos beschleunigen
die Programmentwicklung von Applikationen.

Das Achs-Interface enthalt Steuersignale und Parameter fur die
verschiedenen Betriebsarten der Achsen sowie Einstellmdglich-
keiten fir angewahlte Prozesswerte.

Tab. 4: Programmorganisationseinheiten des Achs-Interface in der Bibliothek CXA_Mofioninferface
Anwendungsgebiet (Ordner in der Bibliothek CXA_Motioninterface)

POUs Beschreibung

AxisInterface/POUs

4 31.07.2020

~ , Seite

~ , Seite

AxisInterface/DUTs

Axislnterface/GlobalVariables

o

CXA_MotionInterface.library

Achs-Interface

Wird zur Initialisierung des Achs-Interfaces fir eine
einzelne Achse benutzt. Der Funktionsbaustein
muss nur einmal beim Programmstart oder bei
jeder Modusumschaltung von Configuration in Run-
ning aufgerufen werden.

Konfiguration des Achs-Interfaces flr eine einzelne
Achse. Der Funktionsbaustein muss zyklisch (im
Motion-Takt oder langsamer als der Motion-Takt)
aufgerufen werden, solange man sich im Betriebs-
modus befindet

Informationen zu den Datenstrukturen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
onlinterface im Ordner "AxisInterface/DUTs".

Informationen zu den globalen Variablen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
oninterface im Ordner "AxisInterface/GlobalVaria-
bles".

Das Achs-Interface wird als Programmiertemplate oder als stand-
alone-Interface fir die Achsfunktionalitét zur Verfigung gestellt.

Wenn es mit dem Programmiertemplate "ctriX CORE Axis-/Kin-
Interface” benutzt wird, muss sich der Anwender nicht mit Instanz-
Aufrufen der Funktionsbausteine innerhalb des Projektes
befassen. Diese Funktionalitat ist komplett in das Template infeg-
riert und der Anwender muss nur ein paar Zeilen Code schreiben.

Wird hingegen das Achs-Interface als eigenstédndige Funktionalitét
benutzt, erfordert dies das Anlegen von Instanzen von beiden
Funktionsbausteinen fir jede Achse durch den Anwender.

Tab. 5: Programmorganisationseinheiten des Achs-Interface in der Bibliothek CXA_MotioninterfaceUser

Anwendungsgebiet (Ordner in der Bibliothek CXA_MotionInterfaceUser)

POUs
AxisInterfaceUser/POUs

TE_AxisInitAllAxes

TE_AxisInterface erweitert # , Seife

Beschreibung

Initialisierung des Achs-Interfaces fiir alle Achsen.
Ruft intern den # , Seite fiir jede Achse auf

Hier kann das Achs-Interface fir eine einzelne
Achse durch den Anwender erweitert werden »
Kapitel 1.3.7 ,Achs-Interface Anwender-Erweite-
rung “ auf Seife 36. Der Funktionsbaustein muss
zyklisch (im Motion-Takt oder langsamer als der
Motion-Takt) aufgerufen werden, solange man sich
im Betriebsmodus befindet

31.07.2020

CXA_MotionInterface.library

Achs-Interface

TE_AxisInterfaceMainProg

TE_GetAxisInterfacelndex

AxisInterfaceUser/DUTs

AxisInterfaceUser/GlobalVariables

Global_AxisInterface

AxisInterfaceUser/Visualizations

A Kapitel 1.3.6.4 ,Achs-Interface Visualisierungen “
auf Seite 34

AxisInterfaceUser/_AxifDebug
Bei Problemen kann mit Hilfe der POUs in diesem

Ordner der Ablauf der Motion-Befehle aufge-
zeichnet werden.

AxislInterfaceUser/_Examples

PROGRAM Example_AxIfApplicationPart

Projektierungshinweis/Laufzeitbedarf

Das Hauptprogramm fuhrt bei Erreichen des Modus
"Running" die Initialisierung aus und nach erfolgrei-
cher Initialisierung wird der TE_AxisInterface fir
alle Achsen aufgerufen

Liefert den Index einer Achse, anhand des Achs-
Namen

Weitere Informationen siehe Online-Dokumentation
in der Bibliothek CXA_MotioninterfaceUser im
Ordner "AxisInterfaceUser/POUs".

Informationen zu den Datenstrukturen siehe
Online-Dokumentation in der Bibliothek CXA Moti-
oninterfaceUser im Ordner "AxisInterfaceUser/
DUTs".

Hier ist das eigentliche Achs-Interface mit den
Arrays arAxisCtrl_gb und arAxisStatus_gb zu
finden. Die weiteren Variablen werden intern bzw.
von den Visualisierungen genutzt.

Siehe auch # Kapitel 1.3.4 , Achs-Interface - Glo-
bale Variablen “ auf Seite 27

Inbetriebnahmevisualisierungen, z.B. zum Ver-
tippen der Achsen

Informationen zu diesem Debug-Feature siehe
Online-Dokumentation in der Bibliothek CXA Moti-
oninterfaceUser im Ordner "AxisInterfaceUser/
_AxifDebug". Ein HowTo ist in der Dokumentation
des Programmes "TE_AxIfDebugProg" zu finden.

Beispielcode zur Anwendung des Achs-Interfaces.
Im Programm-Template "ctrIX CORE Axis-/Kin-
Interface" ist dieser Beispielcode auch enthalten.

Fur jede Achse des Achs-Interface wird der Achs-Interface-Funkti-

onsbaustein aufgerufen. Dieser Aufruf bendtigt Laufzeit der SPS.
Diese Laufzeit variiert je nach Achstyp und Achsbetriebsart.

31.07.2020

CXA_MotionInterface.library

Achs-Interface

/
/ Data Interfa ce y FUNCTION_BLOCK TE_AxisInterface EXTENDS MB_AxisInterfaceBase
- - ' i ce
arAxisCtrl_gb[i])\ Adminc =

StopModeCtd
PosModeCtd

Axis structures CoordModeCird

for input data ?J_ia::in;:ti:m
DataStatus
DisgStatus
i0pMode
bStart
udiCycdeCounter
[AdminCtrlExt

StopModeCtriBxt
PosModeCtriExt

. AdminStatusExt
Axis structures DataStatusExt

for output data DiagStatusExt
SetupModelo:

\ /

\\ /

'
arAxisStatus_gbli] \)4

Abb. 1: Achs-Interface Datenstruktur des Interface

Tab. 6. Zuordnung Anwender-interface zur Achs-Inferface-Datenstruktur:

Anwender-Inter- Typ Beschreibung

face

arAxisCtrl[]_gb TE_AXIS_CON- Steuerungsstruktur inklusive Sollwerte und Vari-
TROL_TYPEO1 ablen zum Aktivieren der Betriebsarten

arAxisStatus[] gb TE_AXIS_STATUS TYPEO1 Statusstruktur inklusive Diagnoseinfo, Quittungen
fur die Betriebsarten, Istwerten und Statusinforma-
tion der App rexroth-motion.

31.07.2020 7

CXA_MotionInterface.library

Achs-Interface

Watch 1
Expression Type Value Prep Watch 2
= @ Global_AxisInterface.ardxdsCtrl_gb[l] TE_AXIS_CONTROL_TYPEOL Expression Type Value
= & Admin TE_AXIS_ADMINISTRATION = ﬂ Global_AxisInterface.arAxisStatus_gb[l] TE_AXIS_STATU...
+ %% Config MB_AXIS_ADMIN_CONFIG = @ Admin TE_AXIS_ADML..
4% ClearError BOOL 4% _OpModeack MB_AXIS_MODE ~ ModePosabs
@ _opMode MB_AXIS_MODE ModePosabs 49 Active BOOL
= *p _OpModeBits TE_AXIS_MODE_BITS % Name STRING(15) "MowverX!
@ MODE_AB BOOL + 4 AxisFeatures MB_AXIS_FEAT...
& MODE_AH BOOL 4y LastCmdId ULINT 71
@ MODE_COORDINATED BOOL # ActiveCmdId ULINT 71
MODE_EXTERNAL_FB BOOL @ ActiveCmdSource STRING(50) ‘AxIf. mPosModeabs .
% MODE_GANTRY BOOL @ ActiveCmdStatus STRING(50) 'ACTIVE'
@ MODE_HOMING BOOL @ CmdDone BOOL FALSE
@ MODE_POS_ABS BOOL @ LastCmdStatus STRING(50) 'ACTIVE'
@ MODE_POS_ADD BOOL + 4% _OpModeAckBis TE_AXIS_MOCE...
@ MODE_POS_REL BOOL = @ Data TE_AXIS_DATA
@ MODE_X¥_USER_D BOOL # Aborting BOOL Al
% RetriggerOpMode BOOL # ActualAcceleration LREAL 0
= ¢ StopMode TE_AXIS_STOP_MODE @ ActualPosition LREAL
*& sStoplerk LREAL 0 @ ActualTorque LREAL
@ StopDeceleration LREAL 99 @ ActualVelocity LREAL
= @ PosMode TE_AXIS_POSITIONING # CoordinatedMotion BOOL
+ % DynValues MB_AXIS_DYN_VALUES @ Disabled BOOL
@ Distance LREAL 42 # DiscreteMotion BOOL
& Position LREAL 0 @ DistLeft LREAL
& Velodty LREAL 10 @ ErrorStop BOOL
= @ CoordMode MB_AXIS_COORDIMATED 4 PLCopenState STRING(50)
@ KinName STRING(15) Mover & Standstill BOOL
= @ GantryMode MB_AXIS_GANTRY # StandStillPending BOOL
= @ Master AXIS_REF = & Diag TE_AXIS_DIAGN. ..
@ AxisName STRING(15) K_Axis' @ Error BOOL FALSE
= & SetupMode TE_AXIS_SETUP_MODE @ ErrorlD ERROR._CODE DEVICE_ERROR
& Enable BOOL + @ Errorldent ERROR._STRUCT
@ JogPlus BOOL & NumberMain DWORD 1600000000
& JogMinus BOOL @ MNumberDetail DWORD 16=0C000000
@ Vel LREAL @ Message STRING{6D)
+ g DynValues MB_AXIS_DYM_VALUES = & SetupMode TE_AXIS_SETUP...
@ Joglner BOOL # Enablefck BOOL
@ StepWidth LREAL 1

Abb. 2: Uberblick liber die Datenstrukturen des Achs-Interface

@ Benutzen Sie die AxisNo der MB_AXISIF REF-Struktur als Index
1 fiir das Feld, z. B. arAxisCtr]_gb[MyVirtualAxis.AxisNo]. Admin.
usw.

EnableCyclicScanning

Die interne Handhabung einiger Sollwerte kann durch das arA-
xisCtrl_gb[].Admin.Config.EnableCyclicScanning Element

gesteuert werden.

Wird "EnableCyclicScanning" auf TRUE gesetzt, werden einige
Sollwerte der arAxisCtrl_gb[]-Struktur zyklisch gescannt und sofort
wirksam, wenn sich ein Wert andert.

31.07.2020

CXA_MotionInterface.library

Achs-Interface

= “ Global_aAxisInterface.arfxis Ctrl_gb[0] TE_AXIS_CONTROL_TYPEO1
= & Admin TE_AXIS_ADMIMISTRATION
= % Config MEBE_AXIS_ADMIN_CONFIG
+ @ Axis ME_AXISIF_REF
@ DiagMNbrRefreshTime TIME T#200ms
@ EnableBxtClearError BOOL
[-@ EnableCyclicScanning BOOL
[_ & UpdateEveryInput BOOL
@ PowerOn BOOL
& MotionSync BOOL FALSE
% ClearError BOIOL FALSE
@ _OpMode MB_AXIS_MODE ModePostbs
¥ 4% OpModeBis TE_AXIS_MODE_BITS
% RetriggerOpMode BOOL FALSE
= @ StopMode 'I'E_A}{IS_STOP=MODE
& Stoplerk LREAL_ 0o |
@ StopDeceleration LREAL 93
= @ PosMode TE_AXIS_POSITIONIMG
= %% DynValues MEB_AXIS DYM_VALUES
% Jerkfcc LREAL 0]
% lerkDec LREAL 0
@ Acceleration LREAL 10
& Deceleration LREAL 10
& Distance LREAL 42
& Position LREAL 0
@ Velocity LREAL 10
= @ CoordMode MB_AXIS_COORDINATED
@ KinName STRIMG(15) Muover
= @ GantryMode MB_AXIS_GANTRY
+ @ Master AXIS_REF
= @ SetupMode TE_AXIS_SETUP_MODE
d@ Enable BOOL FALSE
JogPlus BOOL FALSE
d JogMinus BOOL FALSE
@ Vel LREAL 10
+ ¢ Dynvalues MB_AXIS_DYM_VALUES
@ JogIncr BOOL FALSE
& StepWidth LREAL 1

Abb. 3: Zyklisch gescannte Elemente von arAxisCtrl_gb/] sind hervorgehoben

UpdateEverylnput Die oben gezeigten nicht zyklisch gescannten Daten werden bei
einer Anderung eines zyklisch gescannten Elementes ebenfalls
Ubernommen, wenn der Eingang "UpdateEverylnput" gesetzt

wurde.

Beispiel: die Betriebsart "relatives Positionieren” wurde mit den
oben gezeigten Werten Velocity=10 und JerkAcc=0 gestartet.

31.07.2020 9

CXA_MotionInterface.library

Achs-Interface

o

Was ist neu bzw. geandert gegeniiber
der Version fiir MLC/MLD

Um den nachsten Positioniervorgang mit einer geanderten
Beschleunigung zu starten, wird der Eingang "PosMode.DynVa-
lues.JerkAcc" von 0 auf 100 geandert und danach die nachste Dis-
tance geschrieben.

Mit dem Andern der Distance wird auch der Ruck (ibernommen.

Bei der Aktivierung einer Betriebsart ((Admin._OpMode)
werden, unabhangig von der Einstellung des "EnableCyclicS-
canning™Eingangs, alle Eingangsdaten gelesen

Wenn "EnableCyclicScanning” = TRUE, werden alle Eingangs-
daten, die grtin hervorgehoben sind, zyklisch gelesen. Das
bedeutet, dass nach Aktivierung einer Betriebsart jede Ande-
rung der Werte sofort gelesen wird

Im Gegensatz dazu werden alle Eingangsdaten, die blau her-
vorgehoben sind, nicht zyklisch gescannt. Das bedeutet, dass
die Werte nur gelesen werden, wenn eine Betriebsart aktiviert
wird

Wenn "UpdateEverylnput” = TRUE, werden alle Eingangs-
daten, die blau hervorgehoben sind auch ibernommen, wenn
eines der zu dieser Betriebsart gehdrenden zyklisch
gescannten Elemente gedndert wird

Die Datenkonsistenz wird durch "EnableCyclicScanning”
(FALSE—Daten schreiben— TRUE) erreicht

Fir Inbetriebnahmezwecke stehen verschiedene Visualisierungen,
basierend auf den Strukturelementen, die in diesem Abschnitt
beschrieben werden, in der Bibliothek CXA_MotioninterfaceUser
zur Verfligung.

Es wurden Teile des ereignisgesteuerten Achs-Interface (Funk-
tionsbaustein MB_AxisInterfaceType11) ibernommen. Die
Strukturelemente sind zum Teil als Properties implementiert.
Die Unterstrukturen sind dann als Funktionsbausteine anstatt
Strukturen implementiert um Properties nutzen zu kénnen. In
einer Struktur ist eine Methode arAxisCtrl_gb[].Admin.mTrigger-
MoveCmd() implementiert.

Die Betriebsartenanwahl arAxisCtrl_gb[].Admin._OpMode ist
nicht mehr als "UNION" implementiert sondern als Properties
umgesetzt. Bei der Ansteuerung uber Bits (_OpModeBits) ist
damit keine Mehrfachanwahl mehr méglich.

Selten verwendete Elemente von arAxisCtrl_gb[].Admin wurden
in arAxisCtrl_gb[].Admin.Config verschoben (siehe Tabelle
unten).

Werte vom Typ REAL werden jetzt generell als LREAL in den
Strukturen definiert.

Es gibt keine AxisData[] Struktur. Die aktuellen Istwerte und
einige Statusbits sind in arAxisStatus_gb[].Data zu finden.

10

31.07.2020

CXA_MotionInterface.library

Achs-Interface

Tab. 7: Folgende Code-Anderungen sind bei einer Portierung von MLC/MLD mindestens notwendig

(Suchen/Ersetzen).

Code MLC/MLD

Kontrollstruktur arAxisCtrl_gb[]

_OpMode.en

_OpMode.b
Admin.StopDeceleration
Admin.Axis
Admin.DiagNbrRefreshTime
Admin.EnableExtClearError
Admin.EnableCyclicScanning
Admin.UpdateEverylnput
Admin.PowerOn
PosMode.Acceleration
PosMode.Deceleration

SetupMode.Accel

Kontrollstruktur arAxisStatus_gb[]

Admin.MODE_AH

Admin.MODE_COORDINATED

Admin.MODE_EXTERNAL_FB

Admin.MODE_POS_ABS
Admin.MODE_POS_ADD

Admin.MODE_POS_REL

1.3.2
1.3.2.1 MB_AXxisInit
Kurzbeschreibung

y |

Ersetzen durch

_OpMode

_OpModeBits
StopMode.StopDeceleration
Admin.Config.Axis
Admin.Config.DiagNbrRefreshTime
Admin.Config.EnableExtClearError
Admin.Config.EnableCyclicScanning
Admin.Config.UpdateEverylnput
Admin.Config.PowerOn
PosMode.DynValues.Acceleration
PosMode.DynValues.Deceleration

SetupMode.DynValues.Acceleration

Admin._OpModeAckBits. MODE_AH
Admin._OpModeAckBits. MODE_COORDINATED
Admin._OpModeAckBits. MODE_EXTERNAL_FB
Admin._OpModeAckBits. MODE_POS_ABS
Admin._OpModeAckBits.MODE_POS_ADD

Admin._OpModeAckBits. MODE_POS_REL

Diese Liste der Code-Anderungen ist nicht vollstandig. Bei der Por-
tierung ist eine generelle Uberpriifung des Programm-Codes not-

wendlg.

Achs-Interface - Funktionsbausteine

Der Funktionsbaustein MB_AxisInit wird zur Initialisierung des

Achs-Interfaces (# , Seife, fur eine einzelne Achse benutzt.

31.07.2020

1

CXA_MotionInterface.library

Achs-Interface

Schnittstellenbeschreibung

Der Funktionsbaustein muss nur einmal beim Programmstart oder
bei jeder Modusumschaltung von "Configuration" in "Running" auf-
gerufen werden. In der Vorlage "ctrlX CORE Axis/Kin-Interface" ist

dies bereits implementiert.

MB_fwisInit
BOOL__ |Execute Done| BOOL
STRING(15) _ |AxisName Active] BOOL
UINT __|AxisIndex Error| BOOL
ErrorlD| _ ERROR_CODE
EerrIdent_ERRDR_STR_UCT
ME_AXIS ADMINISTEATION _Adrnlnt:‘trl ______________________________________ Jl'u:i _r|_'|_i_r_|__Cj|:_r:I__ ME_AXIS ADMINISTRATION
MB_AXIS_ADMIN_STATUS _ |AdminStatus AdminStatus] MB_AXIS_ADMIN_STATUS
ME_AXIS_ DIAGNOSIS __I_Z!i_gu_g_".:'_‘_t_qtl__l_g. ____________________________________ _I:El_i_El_g_Sj:_E_I!:_L_I:E-__ ME_AXIS_DIAGNOSIS
Abb. 4: Funktionsbaustein MB_AxisInit
Tab. 8: Schnittstellenvariablen MB_Axisinit
I/O-Typ Name Datentyp Kommentar
VAR _INPUT Execute BOOL Die Initialisierung wird durch eine positive
Flanke an "Execute" gestartet
AxisName STRING(15) Name der Achse
AxisIndex UINT Index in den Achslinterface Strukturen
VAR _OUTPU Done BOOL Wird gesetzt, wenn der FB die Bearbeitung
T beendet hat
Active BOOL Wird gesetzt, wenn der FB aktiv ist (nicht im
Leerlaufbetrieb)
Error BOOL Zeigt an, dass ein Fehler in der FB-Instanz
aufgetreten ist
ErrorlD ERROR_CODE Kurzer Hinweis zur Fehlerursache
Errorldent ERROR_STRUCT Detaillierte Information zum Fehler
VAR IN_ OU AdminCitrl MB_AXIS_ADMI- Verwaltung der Achse
T NISTRATION

AdminStatus

DiagStatus

MB_AXIS_ADMIN

_STATUS

MB_AXIS_DIAG-
NOSIS

arAxisCtrl_gbl[i].Admin anschlieRen

Status Verwaltung der Achse

arAxisStatus_gbl[i].Admin anschliefRen

Diagnoseinformationen der Achse

arAxisStatus_gb][i].Diag anschliel3en

12

31.07.2020

CXA_MotionInterface.library

Achs-Interface

Es ist nicht méglich die komplette Instanz der Strukturen (z. B. arA-
xisClrl_gb[]/ arAxisStatus gb[]) liber einen Eingang dem Funkii-
onsbaustein zu lbergeben.

o

Dies wurde vorgenommen, um der Anwender-Applikation spezielle
Erweiterungen zum bestehenden Code zu ermdglichen. Néhere
Details finden Sie unter # , Seite .

Deshalb werden die bendtigten Elemente von TE_AXIS_ CON-
TROL _TYPEOT und TE AXIS STATUS TYPEOT1 als separate Ein-
génge tbergeben.

Der Funktionsbaustein MB_ AxislInit initialisiert die folgenden Struk-
turelemente mit Standardwerten:

Tab. 9: Durch den Funktionsbaustein initialisierte Strukturelemente

Strukturelement Standard

AdminCtrl._OpMode ModeAB
AdminCtrl.Config.Axis.AxisNo AxisIndex
AdminCtrl.Config.Axis.AxisName AxisName

AdminStatus.Active TRUE

AdminStatus.Name AxisName

AdminStatus.Active TRUE fur aktive Achse
AdminStatus.AxisFeatures Aabhangig vom Achstyp, siehe

MB_AXIS_FEATURES in der Bibliothek.

Fehlerbehandlung: Die Fehlercodes des intern benutzten Funktionsbausteines

DL_ReadNode zum Lesen von Datalayer Knoten werden durchge-
reicht. Der Funktionsbaustein kann die folgenden Fehlercodes
erzeugen:

Tab. 10: Fehlercodes des Funktionsbausteins MB_Axisinit

ErroriD Additional1 Additional2 Beschreibung
INPUT_RANGE_ERRO 16#0A0F0107 16#0C230101 String AxisName ist zu
R kurz oder zu lang
STATE_MACHINE_ERR 16#0A0F0107 16#0C230103 Fehler im Ablauf des
OR Funktionsbaustein
1.3.2.2 MB_AxisInterfaceBase
Kurzbeschreibung Der Funktionsbaustein MB_ AxislInterfaceBase wird zur Konfigura-

tion des Achs-Interfaces fir eine einzelne Achse benutzt.

31.07.2020

13

CXA_MotionInterface.library
Achs-Interface

Dieser Funktionsbaustein muss zyklisch (im Motion-Takt oder lang-
samer als der Motion-Takt) aufgerufen werden solange man sich
im Modus "Running" befindet. In der Vorlage "ctrIX CORE Axis/Kin-
Interface" ist dies bereits implementiert.

Interfacebeschreibung B ArooTacoBacs
MB_AXIS_ADMINISTRATION ____|AdminCtrl
MB_AXIS_STOP_MODE ___ |StopModeCtrl
MB_AXIS_POSITIONING ___[PosModeCtrl
MB_AXIS_COORDINATED ____ |CoordModeCtrl
MB_AXIS_GANTRY ___|GantryModeCtrl
MB_AXIS_ADMIN_STATUS ___ |AdminStatus
MB_AXIS_DATA __ |DataStatus
MB_AXIS_DIAGNOSIS __ |DiagStatus

Abb. 5: Funktionsbaustein MB_AxisinterfaceBase

Tab. 11. Schnittstellenvariablen MB_AxisinterfaceBase

I/O-Typ Name Datentyp Kommentar
VAR _INPUT AdminCitrl REFERENCE TO Verwaltung der Achse, arAxisCtrl_gbl[i].Admin
MB_AXIS_ADMI- anschlieRen
NISTRATION
StopModeCitrl REFERENCE TO Stoppen der Achse, arAxisCtrl_gbli].StopMode
MB_AXIS_STOP_ anschlief3en
MODE
PosModeCitrl REFERENCE TO Positionierungsbetriebsarten, arA-
MB_AXIS_POSITI- xisCtrl_gbli].PosMode anschlie3en
ONING
CoordModeCitrl REFERENCE TO Kinematikbetrieb, arAxisCtrl_gb[i]. CoordMode
MB_AXIS _COOR- anschlieRen
DINATED
GantryModeCtrl REFERENCE TO Betriebsart Gantry, arAxisCtrl_gbli]. GantryMode

AdminStatus

MB_AXIS_GANTR
Y

REFERENCE TO
MB_AXIS_ADMIN

anschlieen

Status Verwaltung der Achse, arAxis-
Status_gb[i].Admin anschlieRen

_STATUS
DataStatus REFERENCE TO Istwerte und Status der Achse, arAxis-
MB_AXIS_DATA Status_gb[i].Data anschlieRen
DiagStatus REFERENCE TO Status Diagnose der Achse, arAxis-
MB_AXIS_DIAG- Status_gb[i].Diag anschlieRen
NOSIS

14

31.07.2020

o

Fehlerbehandlung:

CXA_MotionInterface.library
Achs-Interface

Es ist nicht méglich die komplette Instanz der Strukturen (z. B. arA-
xisClrl_gb[JarAxisStatus _gb[]) liber einen Eingang dem Funkii-
onsbaustein zu lbergeben.

Dies wurde gemacht um der Anwender-Applikation spezielle
Erweiterungen zum bestehenden Code zu ermdglichen. Néhere
Details finden Sie unter # , Seite .

Deshalb werden die bendtigten Elemente von TE_AXIS_ CON-
TROL _TYPEOT und TE AXIS STATUS TYPEOT1 als separate Ein-
génge tbergeben.

Zur Performanceopfimierung sind die Strukturen statt als

VAR _IN_OUT als VAR_INPUT mit REFERENCE TO ange-
schlossen. Damit reicht es einmalig die Eingdnge zu initialisieren.
Beim zyklischen Aufruf des Funktionsbausteins miissen damit die
Strukturen nicht tibergeben werden.

Der Funktionsbaustein Uberprift die Eingange von arAxisCtrl_gb[]
und generiert intern die angeforderten Kommandos flr die Achse.
Die Ausgange von arAxisStatus_gb[] werden aktualisiert in Abhan-
gigkeit des Ergebnisses dieser Kommandos.

Zum Beispiel fuhrt das Setzen von "arA-
xisCtrl_gb[].Admin._OpMode" von "ModeAb" auf "ModePosAbs"
zu folgendem Ablauf:

= Uberprifen der erforderlichen Zustande zum Aktivieren eines
Bewegungsbefehls, wie "Achse in Ab"

m Aktivierung der Funktion ML_AxsPower (wenn arA-
xisCtrl_gb.Admin.PowerOn = TRUE)

B Warten auf die Quittung, dass die Leistung der Achse zuge-
schaltet ist (AH/AF)

m Aktivierung der Funktion ML_AxsPosAbs mit den Sollwerten
von PosModeCltrl

® Quittieren des arAxisStatus_gb[].Admin._OpModeAck auf
ModePosAbs (Bit MODE_POS_ABS)

B Scannen der Werte PosModeCtrl.Position, PosModeCtrl.Velo-
city, PosModeCtrl.DynValues.Acceleration und PosMo-
deCtrl.DynValues.Deceleration und erneutes Aktivieren des
ML_AxsPosAbs im Fall von Anderungen

Die Fehlercodes der intern benutzten Funktionsbausteine (z.B.
DL_ReadNode zum Lesen von Datalayer Knoten) und der intern
benutzten Funktionen ((z.B. ML_AxsPower) werden durchge-
reicht. Der Funktionsbaustein kann die folgenden Fehlercodes
erzeugen:

Tab. 12: Fehlercodes des Funktionsbausteins MB_Axisinterfacebase

ErroriD Additional1 Additional2 Beschreibung
INPUT_RANGE_ERRO 16#0A0F0107 16#0C230110 Mindestens einer der
R Funktionsbaustein-Ein-
gange ist nicht initial-
isiert
DEVICE_ERROR 16#0A0F0107 16#0C230111 Achse ist im ErrorStop

31.07.2020

15

CXA_MotionInterface.library

Achs-Interface

ErroriD Additional1 Additional2 Beschreibung
STATE_MACHINE_ERR 16#0A0F0107 16#0C230113 Fehler im Ablauf des
OR Funktionsbaustein
RESOURCE_ERROR 16#0A0F0107 16#0C230115 Ctrl. Admin.PowerOn ist

auf FALSE eingestellt,
eine Betriebsart wurde
angewahlt aber der
Antrieb ist nicht in
AH/AF

RESOURCE_ERROR 16#0A0F0107 16#0C230116 Mit der Methode
Ctrl.Admin.mTriggerMo-
veCmd() wurde in
ModeAb eine
Betriebsart angewahlt

INPUT_RANGE_ERRO 16#0A0F0107 16#0C230117 OpMode wird von dem
R Funktionsbaustein in
dieser Variante nicht
unterstitzt
STATE_MACHINE_ERR 16#0A0F0107 16#0C230118 Fehler im Ablauf des
OR Funktionsbaustein -
Power
STATE_MACHINE_ERR 16#0A0F0107 16#0C230119 Fehler im Ablauf des
OR Funktionsbaustein -
Reset
STATE_MACHINE_ERR 16#0A0F0107 16#0C23011A Fehler im Ablauf des
OR Funktionsbaustein -
Stop

1.3.3 Achs-Interface - Betriebsarten
1.3.3.1 Uberblick
Es gibt drei Methoden um eine Betriebsart zu aktivieren:
® Auswahl iiber ENUM-Werte
Zuweisen eines Wertes vom TYPE MB_AXIS_MODE an

arAxisCtrl_gb[].Admin._OpMode:
arAxisCtrl gb[].Admin. OpMode:

ModePosAbs;
- oder -
arAxisCtrl gb[].Admin. OpMode:= ModeAB;

® Benutzung des Bit-Zugriffs
Setzen eines Bits Uber die Bit-Zugriffs Funktionalitat.

arAxisCtrl gb[].Admin. OpMode-
Bits .MODE_POS_ABS := TRUE;

Léschen des "_OpMode" durch Bit-Zugriffs Funktionalitat ist
auch mdglich.

16 31.07.2020

o

o

CXA_MotionInterface.library
Achs-Interface

arAxisCtrl gb[].Admin. OpMode-
Bits.MODE POS ABS := FALSE; Durch das Bit-Léschen
wird MODE_AB aktiviert.

Auch méglich: arAxisCtrl gb[].Admin. OpMode-
Bits.MODE AB := TRUE;

® Benutzung der Methode Ctrl. Admin.mTriggerMoveCmd()

Siehe auch "DemoBufferedAxisCommands" in der Vorlage
"ctrIX CORE Axis/Kin-Interface"

Diese Methode setzt sofort in dem Kontext dieses Aufrufes den
Befehl an die Motion-Firmware ab. Damit dies funktioniert,
muss die Achse bereits freigegeben sein, z.B. ModeAH und
CmdDone abfragen.

Aufruf: arAxisCtrl gb[uiAxisIndex].Admin.mTrig-
gerMoveCmd (_ OpMode:= ModePosAbs, Buf-
fered:=TRUE, UserID:='my text');

- Ubergabeparameter _Opmode = Wert vom TYPE
MB_AXIS_MODE

- Ubergabeparameter Buffered = TRUE: Kommando wird erst
aktiv, wenn das vorhergehende Kommando abgeschlossen
ist

- Ubergabeparameter Buffered = FALSE: das vorhergehende
Kommando wird abgebrochen

- Ubergabeparameter UserlD = String (max. 25 byte). Wird als
"Source" Ubergeben bei Aufruf von Motionkommandos. Bei
Fehlern kann so die Quelle des Befehls identifiziert werden.

- Returnwert der Methode: "cmdID" des abgesetzten Motion-
kommandos. Bei Fehler wird 16#FFFFFFFFFFFFFFFF
zurlckgegeben.

Nur mit der Methode arAxisCtrl_gbluiAxisindex]. Admin.mTrigger-
MoveCmad() kénnen auch gepufferte Befehle abgesetzt werden. Es
ist damit auch moglich mehrere Befehle in einem Zyklus abzu-
setzen (Buffered = TRUE).

Bevor eine Betriebsart aktiviert werden kann, missen jedem
Attribut zuerst Werte zugewiesen werden. Alle Attribute haben
Standardwerte. Einige haben Werte ungleich Null, wahrend andere
als 0 definiert sind und aufgrund der speziellen Anforderungen
ihnen ein Wert zugewiesen werden muss.

Nur die Attribute (z. B. Position, Geschwindigkeit), die benuizt
werden oder deren Standardwert gedndert wurde, missen dekla-
riert werden, bevor der aktuelle Betriebsartenwechsel ausgefiihrt
wird.

31.07.2020

17

CXA_MotionInterface.library

Achs-Interface

1.3.3.2

Antrieb Bereit

i

Die Status-Quittung (arAxisStatus gb/[].Admin.) fir eine
Betriebsart ist wie folgt implementiert.

Beispiel:

- Die Status-Quittung gibt nur dann TRUE zurtick, wenn das
Kommando zum Umschalfen der Achse auf absolutem Positi-
onierungsbetrieb ausgefiihrt wurde:

arAxisStatus gb[].Admin.MODE POS ABS

- Die Status-Quittung wird sofort beim Absetzen eines neuen
Kommandos zurtickgesetzt:
arAxisStatus gb[].Admin.CmdDone

Die Positionierungsbetriebsart wird aktiviert:
arAxisCtrl gb[].Admin. OpMode.b.MODE POS ABS

Der Ausgang wird auf TRUE geselzt, wenn der Antrieb in den
Positionierungsbetrieb schaltet und anféngt sich zu drehen:

arAxisStatus gb[].Admin.MODE POS ABS

Hat der Antrieb die Zielposition erreicht, wird die Statusquitfung
geselzt:

arAxisStatus gb[].Admin.CmdDone

Der Eingang arAxisCtrl_gb.Admin.PowerOn steuert die interne
Verwendung des ML_AxsPower (Bibliothek CXA_Motion) im Achs-
Interface:

B PowerOn = TRUE (Standard): Das Achs-Interface Gbernimmt
die Ansteuerung des ML_AxsPower. Bei Aktivierung einer
Betriebsart wird intern zuerst der ML_AxsPower aufgerufen und
erst nach Bereitmeldung wird die eigentlich angewahlte
Betriebsart aktiviert. Bei Abschaltung (ModeAb) wird der
ML_AxsPower nach Anhalten des Antriebes weggenommen

B PowerOn = FALSE: Das Applikationsprogramm muss den
ML_AxsPower bedienen. Bei Anwahl einer Betriebsart ohne
vorherige Ansteuerung des ML_AxsPower wird ein Fehler vom
Achs-Interface ausgegeben

Der folgende Abschnitt beschreibt die Betriebsarten, die vom Achs-
Interface Basis Typ unterstltzt werden und die Attribute, die zuge-
wiesen werden konnen. Es wird im Folgenden vom Standardwert
des Eingangs "PowerOn" (TRUE) ausgegangen.

Die Aktivierung dieser Betriebsart schaltet den Antrieb in AB
(Antrieb Bereit) und schaltet das Drehmoment ab. Folgendes Kom-
mando aktiviert die Betriebsart:

arAxisCtrl gb[].Admin. OpMode:= ModeAB;

oder

18

31.07.2020

Attribute Antrieb Bereit

i

CXA_MotionInterface.library

Achs-Interface

arAxisCtrl gb[].Admin. OpModeBits.MODE AB:= TRUE;

Das Achsinterface benutzt infern die Funktionen ML_AxsPower
und ML_AxsAbort (Bibliothek CXA_Motion), um die Umschaltung
durchzufiihren.

Tab. 13: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl[] StopMode.StopDeceleration LREAL 99.0 Ja

StopMode.StopJerk LREAL 0.0 Nein
arAxis- Admin._OpModeAck- BOOL entfallt

Status_gb[] Bits. MODE_AB

1.3.3.3 Antrieb Halt

o

Die Aktivierung dieser Betriebsart schaltet den Antrieb in AH
(Antrieb Halt) unter Aufrechterhaltung des Drehmoments. Die
Betriebsart "ModeAH" iberflihrt die Achse in den PLCopen
Zustand "StandStill", d. h. ein auRerhalb des Achs-Interfaces auf-
gerufener PLCopen-Funktionsbaustein wird akzeptiert und das
Achs-Interface meldet "ModeExternalFB".

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl gb[].Admin. OpMode := ModeAH;

oder

arAxisCtrl gb[].Admin. OpModeBits.MODE AH :=
TRUE;

Das Achsinterface benutzt infern die Funktionen ML_AxsPower
und ML_AxsAbort (Bibliothek CXA_Motion), um die Umschaltung
durchzufiihren.

31.07.2020

19

CXA_MotionInterface.library
Achs-Interface

Attribute Antrieb Halt

Tab. 14. Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ
arAxisCtrl[] StopMode.StopDeceleration LREAL
StopMode.StopJerk LREAL
arAxis- Admin._OpModeAck- BOOL
Status_gb[] Bits.MODE_AH
Admin.CmdDone BOOL

1.3.34 Absolutes Positionieren

o

Standard

99.0

0.0

Zyklisch
gescan
nt

Ja

Nein

entfallt

entfallt

Die Aktivierung dieser Betriebsart fiihrt eine absolute Bewegung
auf eine vorher festgelegte Zielposition aus.

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl gb[].Admin. OpMode := ModePosAbs;

oder

arAxisCtrl gb[].Admin. OpModeBits.MODE POS ABS :=

TRUE;

Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurlick, wenn der Antrieb seine Zielposition erreicht

hat:

arAxisStatus _gb[].Admin.CmdDone

Das Achs-Interface benutzt intern die Funktionen ML_AxsPower
und ML_AxsPosAbs (Bibliothek CXA_Motion), um die Umschal-

tung durchzufihren.

20

31.07.2020

Attribute Absolutes Positionieren

CXA_MotionInterface.library

Achs-Interface

Tab. 15: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element

arAxisCtrl_gb[]

arAxis-
Status_gb[]

Name Typ Standard Zyklisch
gescan
nt

PosMode.Position LREAL 0.0 Ja

PosMode.Velocity LREAL 10.0 Ja

PosMode.DynValues.Accele- LREAL 10.0 Ja

ration

PosMode.DynValues.Decele- LREAL 10.0 Ja

ration

PosMode.DynValues.JerkAcc LREAL 0.0 Nein

PosMode.DynValues.JerkDec LREAL 0.0 Nein

Admin._OpModeAck- BOOL entfallt

Bits. MODE_POS_ABS

Admin.CmdDone BOOL entfallt

1.3.3.5 Relatives Positionieren
Die Aktivierung dieser Betriebsart fihrt eine relative Bewegung auf
eine vorher festgelegte Zielposition durch Addition der Pos-
Mode.Distance zur aktuellen Istposition aus.
Folgendes Kommando aktiviert die Betriebsart:
arAxisCtrl gb[].Admin. OpMode := ModePosRel;
oder
arAxisCtrl gb[].Admin. OpModeBits.MODE POS REL :=
TRUE;
Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurlick, wenn der Antrieb seine Zielposition erreicht
hat:
arAxisStatus_gb[].Admin.CmdDone

31.07.2020 21

CXA_MotionInterface.library

Achs-Interface

Attribute Relatives Positionieren

@ Das Achs-Interface benutzt intern die Funktionen ML_AxsPower

und ML_AxsPosRel (Bibliothek CXA Motion), um die Umschaltung
durchzufiihren.

Tab. 16: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl_gb[] PosMode.Distance LREAL 0.0 Ja

PosMode.Velocity LREAL 10.0 Ja
PosMode.DynValues.Accele- LREAL 10.0 Ja
ration

PosMode.DynValues.Decele- LREAL 10.0 Ja
ration

PosMode.DynValues.JerkAcc LREAL 0.0 Nein
PosMode.DynValues.JerkDec LREAL 0.0 Nein

arAxis- Admin._OpModeAck- BOOL entfallt
Status_gb[] Bits. MODE_POS_REL
Admin.CmdDone BOOL entfallt

1.3.3.6 Additives Positionieren

Die Aktivierung dieser Betriebsart fiihrt eine relative Bewegung auf
eine vorher festgelegte Zielposition durch Addition der Pos-
Mode.Distance zur aktuellen Zielposition aus.

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl gb[].Admin. OpMode := ModePosAdd;

oder

arAxisCtrl gb[].Admin. OpModeBits.MODE POS ADD:=
TRUE;

Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurlick, wenn der Antrieb seine Zielposition erreicht
hat:

22

31.07.2020

i

Attribute Additives Positionieren

CXA_MotionInterface.library

Achs-Interface

arAxisStatus gb[].Admin.CmdDone

Das Achs-Interface benutzt intern die Funktionen ML_AxsPower
und ML_AxsPosAdd (Bibliothek CXA_Motion), um die Umschal-
tung durchzufihren.

Tab. 17: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl_gb[] PosMode.Distance LREAL 0.0 Ja

PosMode.Velocity LREAL 10.0 Ja
PosMode.DynValues.Accele- LREAL 10.0 Ja
ration

PosMode.DynValues.Decele- LREAL 10.0 Ja
ration

PosMode.DynValues.JerkAcc LREAL 0.0 Nein
PosMode.DynValues.JerkDec LREAL 0.0 Nein

arAxis- Admin._OpModeAck- BOOL entfallt
Status_gb[] Bits. MODE_POS_ADD
Admin.CmdDone BOOL entfallt

1.3.3.7 Betriebsart "Robot-Control"

Die Aktivierung dieser Betriebsart schaltet den entsprechenden
Antrieb in zyklische Lageregelung (antriebsgefiihrt). Des Weiteren
wird die entsprechende Achse automatisch zu einer Kinematik
gruppiert. Die so gruppierten Achsen kénnen dann eine koordi-
nierte Bewegung ausfihren.

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl gb[].Admin. OpMode := ModeCoordinated;

oder

31.07.2020

23

CXA_MotionInterface.library

Achs-Interface

i

Attribute Betriebsart Robot-Control

arAxisCtrl gb[].Admin. OpModeBits.MODE COORDI-
NATED:= TRUE;

Die Ruckmeldung dieser Betriebsart TRUE erfolgt in der Achssta-
tusstruktur:

arAxisStatus gb[].Admin. OpModeAckBits.MODE COOR-
DINATED;

Das Achs-Interface benutzt intern die Funktionen ML_AxsPower,
ML_AxsAddToKin und ML_AxsRemoveFromKin (Bibliothek
CXA_Motion), um die Umschaltung durchzufiihren.

Tab. 18: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl_gb[] CoordMode.KinName STRING(15) Nein

Deklaration:
z. B: Kin1: MB_AXESGROUPIF_REF :=(Kin-
Name:='Kin1',GroupNo:=0);
Zuweisung:
z. B: arAxisCtrl_gb[uiAxisIndex].CoordMode.KinName := Kin1.Kin-
Name;

1.3.3.8 Betriebsart "Gantry"

Die Aktivierung dieser Betriebsart schaltet den entsprechenden
Antrieb in zyklische Lageregelung (antriebsgefiihrt). Des Weiteren
wird die entsprechende Achse automatisch einem Gantry-Master
angekoppelt. Die Achse folgt dem Gantry-Master im PLCopen
Zustand "SYNCHRONIZED_MOTION".

Folgendes Kommando aktiviert die Betriebsart:

24

31.07.2020

i

Attribute Betriebsart Gantry

CXA_MotionInterface.library

Achs-Interface

arAxisCtrl gb[].Admin. OpMode := ModeGantry

oder

arAxisCtrl gb[].Admin. OpModeBits.MODE GANTRY:=
TRUE;

Die Ruckmeldung dieser Betriebsart TRUE erfolgt in der Achssta-
tusstruktur:

arAxisStatus_gb[].Admin. OpModeAck-
BitS.MODE_GANTRY;

Das Achs-Interface benutzt intern die Funktionen ML_AxsPower,
ML _AxsAddToGantry und ML _AxsRemoveFromGantry (Bibliothek
CXA_Motion), um die Umschaltung durchzufiihren.

Tab. 19: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name

arAxisCtrl_gb[] GantryMode.Master

Typ Standard Zyklisch
gescan
nt

AXIS_REF Nein

Deklaration:

z. B: Master1: AXIS_REF :=(AxisName:='Axis1');

Zuweisung:

z. B: arAxisCtrl_gb[uiAxisindex].GantryMode.Master := Master1;

1.3.3.9 Betriebsart "Externer Funktionsbaustein"

Wenn sich die Achse bereits in einer Betriebsart befindet, dann
wird bei der Aktivierung dieser Betriebsart kein Bewegungsbefehl
vom Achs-Interface ausgefuhrt.

Wird die Betriebsart von ModeAb auf ModeExternalFB geandert,
dann schaltet das Achs-Interface den Antrieb in AH und wartet auf
einen externen Bewegungsbefehl, z. B. von einer Technologiefunk-
tion.

31.07.2020

25

CXA_MotionInterface.library

Achs-Interface

y |

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl gb[].Admin. OpMode := ModeExternalFB;

oder

arAxisCtrl gb[].Admin. OpMode-
Bits. MODE_EXTERNAL_FB := TRUE;

Das Achs-Interface benutzt intern die Funktion ML_AxsPower (Bib-
liothek CXA_Motion), um die Umschalfung durchzufiihren.

Attribute Betriebsart Externer Funktionsbaustein

Tab. 20: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis- Admin._OpModeAck- BOOL entfallt

Status_gb[] Bits. MODE_EXTERNAL_FB

1.3.3.10 Benutzerdefinierte Betriebsarten

Bei benutzerdefinierbaren Betriebsarten werden die Motion-Kom-
mandos in der anwenderspezifischen Erweiterung in der Bibiliothek
CXA_MotioninteraceUser festgelegt. Damit kénnen Anwender
eigene Betriebsarten und deren Motion-Kommandos frei imple-
mentieren. Es stehen insgesamt 10 benutzerdefinierte Betriebs-
arten (ModeUserXx_User_0...ModeUserXx_User_9) zur Verfi-
gung. Fur ModeUserXx_User_0 ist bereits eine
Beispielimplementation vorhanden.

Wenn sich die Achse bereits in einer Betriebsart befindet, dann
wird bei der Aktivierung dieser Betriebsart kein Bewegungsbefehl
vom Achs-Interface ausgefuhrt.

Wird die Betriebsart von ModeAb auf Mode-
UserXx_User_0...ModeUserXx_User_9 geandert, dann schaltet
das Achs-Interface den Antrieb in AH und wartet auf einen Bewe-
gungsbefehl aus der Erweiterung im Applikationsteil.

Folgendes Kommando aktiviert die erste benutzerdefinierte
Betriebsart:

26

31.07.2020

CXA_MotionInterface.library

Achs-Interface

arAxisCtrl gb[].Admin. OpMode := Mode-
UserXx User 0;

oder

arAxisCtrl gb[].Admin. OpMode-
Bits.MODE XX USER 0:= TRUE;

® Das Achs-Interface benutzt intern die Funktion ML_AxsPower (Bib-
1 liothek CXA _Motion), um die Umschalfung durchzufiihren.

Attribute der benutzerdefinierten Betriebsarten

Tab. 21: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis- Admin._OpModeAck- BOOL entfallt

Status_gb[] Bits. MODE_XX_USER_0...9

1.34 Achs-Interface - Globale Variablen

Die Bibliothek CXA_MotionInterfaceUser enthalt im Ordner "AxisIn-
terfaceUser/GlobalVariables" die globale Variablenliste
"Global_AxisInterface".

Diese Liste enthalt die folgenden Strukturen/Variablen:

Name Type Beschreibung

arAxisCtrl_gb[] ARRAY [] OF TE_AXIS_CON- Kontrollstruktur des Achslinter-
TROL_TYPEO1 face

arAxisStatus_gb[] ARRAY [] OF Statusstruktur des Achsinterface
TE_AXIS_STATUS_TYPEO1

arAxisldx_gb ARRAY [] OF UINT Nicht lickende Liste der Achsen

uiNofAxis_gb UINT Anzahl der aktiven Achsen

VisuAxisNo INT Umschaltung des Achsindex in

den Visualisierungen

bRemoteOn_gb BOOL TRUE: Visualisierung ist aktiv

31.07.2020 27

CXA_MotionInterface.library

Achs-Interface

1.35 Achs-Interface - Strukturen

1.3.5.1 Uberblick

o

Das Achs-Interface stellt eine Datenschnittstelle zur komfortablen
Ansteuerung der Achsen zur Verfliigung.

Informationen zu den Datenstrukturen siehe Online-Dokumentation
in den Bibliotheken CXA_Motioninterface im Ordner "AxisInterface/
DUTs" bzw. in CXA_MotioninterfaceUser im Ordner "AxisInterfa-
ceUser/DUTs".

Das Programm-Template "ctriX CORE Axis/Kin-Interface" ist so
vorbereitet, dass es durch den Anwender erweiterbar ist bzw. es
sind einige Erweiterungen schon mit eingebaut. Um diese Erweite-
rungen zu ermadglichen, ist es notig, eigene Strukturen im Anwen-
derprojekt zu definieren, die die Strukturen der Bibliothek erwei-
tern. Die erweiterteten Strukturen sind durch den Préfix "TE_"
gekennzeichnet. Wenn also imProgramm-Template "ctriX CORE
Axis/Kin-Interface” eine Struktur, z.B. TE_AXIS_ADMIN_STATUS
heisst, ist diese eine erweiterte Struktur der
MB_AXIS_ADMIN_STATUS.

Informationen zu der Struktur sind in der Online-Dokumentation
unter dem Namen MB_AXIS_ADMIN_STATUS in der Bibliothek
CXA_Motioninterface und unter dem Namen

TE_AXIS ADMIN_STATUS in der Bibliothek CXA_Motioninterfa-
ceUser zu finden.

1.3.6 Achs-Interface - Beispielprogramm

1.3.6.1 Uberblick

In diesem Kapitel soll ein Uberblick (iber die als offener Code ver-
fugbaren Teile des Achs-Interface gegeben werden.

Die offenen Programmteile werden mit den folgenden Elementen
geliefert:

® Das Programmiertemplate "ctrIX CORE Axis/Kin-Interface"
dient als Beispielapplikation fur das Achs-Interface. Siehe auch
~ Kapitel 1.2 ,Motioninterface - Erstkonfiguration “ auf Seite 2

® Die Bibliothek CXA_MotionInterfaceUser.library kann durch den
Anwender verandert werden um das Achs-Interface an die
jeweilige Applikation anzupassen. Siehe auch # Kapitel/ 1.3.7
LAchs-Interface Anwender-Erweiterung “ auf Seite 36.

1.3.6.2 Programmiertemplate "ctrlX CORE Axis/Kin-Interface"

Das Programmiertemplate "ctrIX CORE Axis/Kin-Interface" deckt
die folgenden Punkte zum Achs-Interface ab:
= PicProg:

Aufruf des TE_AxisInterfaceMainProg() - Initialisierung und
Zyklischer Aufruf des Achs-Interface.

28

31.07.2020

CXA_MotionInterface.library
Achs-Interface

Beispielcode zur Verwendung des Achsinterface. Dieser Code

muss fir das eigene Projekt entsprechend angepasst werden.
® MotionProg:

Hier wird die Methode TE_AxisInterfaceMainProg.mMotion-

Task() aufgerufen. In diesem Takt werden die Istwerte in arAxis-

Status_gb[].Data aufgefrischt. Falls die Methode nicht aufge-

rufen wird, werden die Istwerte im Takt des PlcProg aktualisiert.
m GlobalAxisDefines:

Wird nur bendtigt, wenn MOTIF_CONFIG.CONFIG_MODE auf

GLOB_VAR eingestellt ist.

Hier werden die Achsen als Konstanten vom Typ
MB_AXISIF_REF definiert und in einer Liste an TE_AxisInterfa-
ceMainProg() iibergeben. Die Konstanten mussen fiir das
eigene Projekt entsprechend angepasst werden.

® DemoBufferedAxisCommands:

Beispielcode mit einer Ablaufprogrammierung und dem
Absetzen gepufferter Achskommandos. Dieser Code muss fir
das eigene Projekt entsprechend angepasst werden.

m OverViewAxes:

Visualisierung zur Bedienung des Achs-Interface wahrend der
Inbetriebnahmephase. Durch Klicken auf Felder mit "<<" kann
in weitere Bilder abgetaucht werden.

® Version_AxisKinInterface:
Anderungshistorie und Disclaimer

1.3.6.3 Bibliothek CXA_MotionInterfaceUser.library"

TE_AxisInterfaceMainProg

Diese offene Bibliothek dient dazu die Funktionsbausteine und
Strukturen der Basisbibliothek CXA_Motioninterface zu erweitern.
Programme und Visualisierungen werden hier zur Verfligung
gestellt. Hier sind auch die globalen Variablen der Interfaces
instanziiert. Mit dieser Bibliothek sind Anpassungen / Erweite-
rungen der Interfaces durch den Anwender maoglich.

Wie man die Anpassungen ausfiihren kann, ist hier # Kapite/ 1.3.7

LAchs-Interface Anwender-Erweiterung “ auf Seife 36 beschrieben

In diesem Kapitel werden die POUs des Achslinterface aus dem
Ordner "AxisInterfaceUser/POUs" beschrieben.

Das Programm TE_AxisInterfaceMainProg deckt die folgenden
Punkte ab:

m |Initialisierung des Achs-Interface:

Bei Erreichen des Modus "Running" wird das Achs-Interface mit
Hilfe des Funktionsbausteins TE_AxisInitAllAxis initialisiert. Bei
erfolgreicher Initialisierung wird der Ausgang "InitDone" gesetzt,
bei Fehlern der Ausgang "Error".

m Zyklischer Aufruf des Achs-Interface:

Nach erfolgreicher Initialisierung wird der Funktionsbaustein
(FB) TE_AxisInterface zyklisch aufgerufen.

B Methode TE_AxisinterfaceMainProg.mMotionTask():

31.07.2020

29

CXA_MotionInterface.library
Achs-Interface

Wird die Methode aus einer schnelleren MotionTask aufgerufen,
werden die Elemente in "arAxisStatus_gb[].Data" im schnell-
eren Takt aktualisiert. Der Aufruf des FB TE_AxisInterface kann
mit Hilfe der Steuer-Variable "arA-
xisCtrl_gb[].Admin.Config.MotionSync" in die schnellere Task
verschoben werden.

Wird die Methode nicht aufgerufen, erfolgen alle Aktualisie-
rungen im Takt der PLC-Task.

Tab. 22: Schnittstellenvariablen TE_AxisinterfaceMainProg

I/O-Typ Name Datentyp Kommentar
VAR _INPUT ClearError BOOL Fehler I6schen wird durch eine positive
Flanke an "ClearError" gestartet
AxisCfgldx POINTER TO Konfigurationsliste fiir die Indizes der Achsen
ARRAY [] OF (nur fur Konfigurationsmodus "GLOB_VAR")
MB_AXISIF_REF
VAR_OUTPU InitDone BOOL Wird gesetzt, wenn das Programm die Initiali-
T sierung erfolgreich beendet hat
Error BOOL Zeigt an, dass ein Fehler im Programm aufge-
treten ist
ErrorlD ERROR_CODE Kurzer Hinweis zur Fehlerursache
Errorldent ERROR_STRUCT Detaillierte Information zum Fehler

Fehlerbehandlung: die Fehlercodes des intern benutzten Funkti-
onsbausteines TE_AxisInitAllAxes werden durchgereicht. Das Pro-
gramm kann die folgenden Fehlercodes erzeugen:

Tab. 23: Fehlercodes des Programmes TE AxisinterfaceMainProg

ErrorlD Additional1 Additional2 Beschreibung
STATE_MACHINE_ERR 16#0A0F0107 16#0C230190 Fehler im Ablauf des
OR Programmes

@ Das Programm TE_AxisinterfaceMainProg ist zum Integrieren des
1 Achs-Interface in ein bestehendes Programm niitzlich.

Siehe auch Example AxlIfApplicationPart im Ordner "Axisinterfa-
ceUser/ Examples”

TE_AxisInitAllAxes Der Funktionsbaustein TE_AxisInitAllAxes initialisiert die Achs-
Interface Strukturen.

Die Initialisierung kann gesteuert werden mit Hilfe der Parameter-
liste "MOTIF_CONFIG".

30 31.07.2020

CXA_MotionInterface.library

Achs-Interface

Es gibt die folgenden Mdglichkeiten:

B AUTO = MOTIF_CONFIG.CONFIG_MODE: Es wird der Data-
layer Knoten "motion/axs/" ausgelesen und die Achsen in der
dort gefundenen Reihenfolge in die Achs-Interface Strukturen

eingeordnet.

B GLOB_VAR = MOTIF_CONFIG.CONFIG_MODE: Die Achsen
werden anhand des globalen Arrays
"AXIF_CONFIG_INDEXES" in die Achs-Interface Strukturen

eingeordnet.
Tab. 24: Schnittstellenvariablen TE AxisinitAllAxes

I/O-Typ Name Datentyp
VAR INPUT Execute BOOL
AxisCfgldx POINTER TO
ARRAY [] OF
MB_AXISIF_REF
VAR _OUTPU Done BOOL
T
Active BOOL
Error BOOL
ErrorlD ERROR_CODE
Errorldent ERROR_STRUCT

Kommentar

Die Initialisierung wird durch eine positive
Flanke an "Execute" gestartet

Konfigurationsliste fiir die Indizes der Achsen
(nur fir Konfigurationsmodus "GLOB_VAR")
Wird gesetzt, wenn der FB die Bearbeitung

beendet hat

Wird gesetzt, wenn der FB aktiv ist (nicht im
Leerlaufbetrieb)

Zeigt an, dass ein Fehler im Programm aufge-
treten ist

Kurzer Hinweis zur Fehlerursache

Detaillierte Information zum Fehler

Fehlerbehandlung: die Fehlercodes des intern benutzten Funkti-
onsbausteines MB_AxisInit werden durchgereicht. Der Funktions-
baustein kann die folgenden Fehlercodes erzeugen:

Tab. 25: Fehlercodes des Funktionsbausteines TE_AxisinitAllAxes

ErrorlD Additional1 Additional2 Beschreibung
INPUT_RANGE_ERRO 16#0A0F0107 16#0C230180 Eingang AxisIndex aus-
R serhalb des gultigen

Bereiches
[MOTIF_CONFIG.MIN_
AXIS_INDEX..MOTIF_C
ONFIG.MAX_AXIS_IND

EX]
INPUT_RANGE_ERRO 16#0A0F0107 16#0C230181 Unbekannter Konfigura-
R tionsmodus
(MOTIF_CONFIG.CFG_
MODE_AXS)
31.07.2020 31

CXA_MotionInterface.library

Achs-Interface

ErroriD Additional1 Additional2 Beschreibung

INPUT_RANGE_ERRO 16#0A0F0107 16#0C230182 Pointer AxisCfgldx zur

R globalen Variablen ist 0
(MOTIF_CONFIG.CFG_
MODE_AXS =
GLOB_VAR)

INPUT_RANGE_ERRO 16#0A0F0107 16#0C230183 Achsindex ausserhalb

R des gultigen Bereiches
(MOTIF_CONFIG.CFG_
MODE_AXS =
GLOB_VAR)

INPUT_RANGE_ERRO 16#0A0F0107 16#0C230184 Achsindex doppelt

R (MOTIF_CONFIG.CFG_
MODE_AXS =
GLOB_VAR)

INPUT_RANGE_ERRO 16#0A0F0107 16#0C230185 Achsname doppelt

R (MOTIF_CONFIG.CFG_
MODE_AXS =
GLOB_VAR)

STATE_MACHINE_ERR 16#0A0F0107 16#0C230188 Fehler im Ablauf des

OR Funktionsbausteines

@ Das Programm TE_AxisinterfaceMainProg ruft diesen Funktions-
1 baustein TE_AxisinitAllAxes bereits auf.

TE_AxisInterface

i

Der Funktionsbaustein TE_AxisInterface erweitert den MB_AXxisIn-
terfaceBase und bearbeitet im zyklischen Betrieb die Achs-Inter-
face Strukturen.

Zur Performanceoptimierung sind die Strukturen statt als
VAR_IN_OUT als VAR_INPUT mit REFERENCE TO ange-
schlossen. Damit reicht es einmalig die Eingédnge zu initialisieren.
Dies geschieht in der Methode "minitExtension”. Beim zyklischen
Aufruf des Funktionsbausteins miissen damit die Strukturen nicht
tbergeben werden.

Tab. 26: Schnittstellenvariablen TE _Axisinterface

I/O-Typ Name
VAR INPUT AdminCtrlExt
Steuer-
Struktur
StopModeCtrlExt
PosModeCtrlExt

Datentyp Kommentar

REFERENCE TO Referenz zur Steuer-Struktur Admin
TE_AXIS_ADMI-
NISTRATION

REFERENCE TO Referenz zur Steuer-Struktur Stop Mode
TE_AXIS_STOP_
MODE

REFERENCE TO Referenz zur Steuer-Struktur Positioning
TE_AXIS_POSITI-
ONING

32

31.07.2020

CXA_MotionInterface.library

Achs-Interface

I/O-Typ Name Datentyp Kommentar
SetupMode REFERENCE TO Referenz zur Steuer-Struktur SetupMode
TE_AXIS_SETUP
_MODE
VAR INPUT AdminStatusExt REFERENCE TO Referenz zur Status-Struktur Admin
Status- TE_AXIS_ADMIN _
Struktur STATUS
DataStatusExt REFERENCE TO Referenz zur Status-Struktur Data
TE_AXIS_DATA
DiagStatusExt REFERENCE TO Referenz zur Status-Struktur Diag
TE_AXIS_DIAG-
NOSIS
SetupModeAck REFERENCE TO Referenz zur Status-Struktur SetupMode

TE_AXIS_SETUP
_MODE_STATUS

Fehlerbehandlung: die Fehlercodes der intern benutzten Funkti-

onsbausteine werden durchgereicht. Der Funktionsbaustein kann
die folgenden Fehlercodes erzeugen:

Tab. 27: Fehlercodes des Funktionsbausteines TE Axisinterface

ErroriD Additional1 Additional2 Beschreibung

16#0C2301A0 Fehler im Ablauf des

Funktionsbausteines

STATE_MACHINE_ERR
OR

16#0A0F0107

@ Das Programm TE_AxisinterfaceMainProg ruft diesen Funktions-
1 baustein TE_Axisinterface bereits auf.

TE_GetAxisInterfacelndex Die Funktion TE_GetAxisInterfacelndex liefert den Index einer
Achse in den Achs-Interface-Strukturen definiert durch den Achs-

Namen.

Tab. 28: Schnittstellenvariablen TE _GetAxisinterfacelndex

I/O-Typ Name Datentyp Kommentar
VAR_INPUT AxisName STRING(15) Name der gesuchten Achse
Return TE_GetAxisInterfa- UINT Index der gesuchten Achse

Rl "16#FFFF" (-1) wenn die Achse nicht

gefunden wurde

Fehlerbehandlung: Die Funktion gibt "16#FFFF" (-1) zuriick, wenn
die Achse nicht gefunden wurde.

31.07.2020 33

CXA_MotionInterface.library

Achs-Interface

1.3.6.4 Achs-Interface Visualisierungen

1.3.6.4.1 Uberblick

Beispielprojekt Visualisierungen

Tab. 29: Beispielprojekt Visualisierungen

Visualisierung

OverviewAxes (im Template-
Project)

Axis_Overview

Position_mode

Zum Achs-Interface werden Visualisierungsmasken mitgeliefert,
um ein vorgefertigtes und einfaches Interface zum Einstellen und
Ansteuern der Systemachsen zur Verflgung zu stellen.

Folgende Visualisierungen sind Programmiertemplate "ctrIX CORE
Axis/Kin-Interface" und in der Bibliothek CXA_Motioninterfa-
ceUser.library enthalten:

Beschreibung

Gesamtliberblick tber alle definierten Achsen, einschlieRlich einfacher
Diagnosen, Status und Tipp-Bedienelemente

Zeigt aktuelles Kommando und aktuelle Werte fiir Position und
Geschwindigkeit, zusammen mit Navigation zur Positions-Anzeige fiir die
aktuelle Achse. Referenzieren und Abschalten der Achsen sind ebenfalls
maoglich

Uberwachen des Positionierbetriebs

Die folgenden globalen Variablen werden zum Steuern und fur den
Zugriff auf Systeminformationen innerhalb der Visualisierungen
benutzt:

B arAxisCtrl_gb[]
® arAxisStatus_gb[]
m VisuAxisNo

1.3.6.4.2 Systemiibersicht-Visualisierung

Die OverviewAxes Visualisierung erlaubt es dem Anwender jede,
im Projekt konfigurierte Achse, schnell anzukoppeln. Zusatzliche
Achsen kénnen im Offline-Betrieb zur Anzeige hinzugefliigt werden.

Diese Anzeige liefert einen Gesamt-Systemstatus und ermdglicht
das Loéschen von Fehlern und das Setzen von Not-Halt. Einzelne
Achs-Bedienelemente liefern den Achsnamen, Diagnosen, aktuelle
Position und Geschwindigkeit zusammen mit den Betriebsarten-
Statusanzeigen. Der SetupMode-Teil erlaubt es dem Anwender,
einzelne Achsen zu joggen und zu positionieren, sowie Achsen zu
starten und zu stoppen.

34

31.07.2020

Hinzufiigen einer Achse zur System-

tbersicht

o

CXA_MotionInterface.library
Achs-Interface

@ OverviewAxes ¥

Clearbror | [RUN] [Overview Axes |
Error O -
[Diagnosis Number MainDetail | [Motion
‘ Diagnosis Text | | Overview <<
Axis Details / Diagnosis Status G SetupMode
<_<| Axis: 0 e ErrodD: Status: Position: T an |
HelloMotion ErrorTabe: ModePosbs | 42.00 Homg| Vel| 10 |Enable
[E] Axis Type: |ErrorAddt: Velocity: Acc| 10
VIRTUAL [ErrorAddz 0.00 Dee| 10
Diagnosis Main/Detail: PLCopen state | Accel:
STANDSTLL 0.00 StepWidth 1 Incr
<< | Axis: 1 v ErrodD: Status: Position: Vell 10 |Enabl
X ErrorTabe: ModePosRel 5.00 (Homsy | ' © Lo
[—] Axis Type: |ErrorAddt: Velocity: Acc| 10
VIRTUAL |[ErrorAdd2- 0.00 Dec| 10
Diagnosis Main/Detail: PLCopen state | Accel:
shedE L 0.00 StepWidth| 1 | Iner
<<| Axis: 2 five] ErrodD: Status: Posihion:
Y ErrorTabe ModeExtemalFB | -23.08 omg | V! E
[E"_] Axis Type: |ErroraAddi: Velocity: Acc| 10 | Jog+
VIRTUAL |[Erroraddz: 0.00 Dec| 10 | Jog-
Diagnosis MainDetail: PLCopen state | Accel: E——
STANDSTLL 0.00 StepWidth 1 Incr
<< Axis: 3 vl ErrodD: Status: Posibion: Vell 10 |Enabl
z ErrorTabe ModeCoordinated| 2.50 tHomey | 1 © s
[—] Axis Type: |ErrorAddi: Velocity: Acc| 10
VIRTUAL |ErrorAdd2: 0.00 Dec| 10
Diagnosis MainDetail: PLCopen state | Accel:
[O0RDINATED_MOTION| 0.00 StepWidth 1 Incr

Abb. 6: OverviewAxes

Das Hinzufluigen einer Achse zur Systemubersicht-Anzeige erfolgt

wie das Hinzufligen einer neuen Visualisierung, durch Anwahlen
des entsprechenden Elements und der Festlegung der Achs-

nummer. Nachfolgend aufgefiihrte Schritte stellen die Vorgehens-

weise kurz dar:

1.) Mit ctrlX PLC Engineering im Offline-Betrieb Doppelklick auf

die "OverviewAllAxes" Visualisierung.

2.) Wahlen Sie im Fenster Visualisierungswerkzeuge die Schalt-

flache ,Frame“an und erzeugen Sie einen Grundriss unter-
halb der letzten Achstabellenzeile, der der Zeilenhéhe und
Zeilenbreite entspricht.

3.) Mit rechter Maustaste auf den Frame klicken und "Frameaus-
wahl" aktivieren. Wahlen Sie das OverviewOneAxis-Element
aus dem Visualisierungsauswahlfenster im Ordner
CXA_MotioninterfaceUser/AxisInterfaceUser/Visualizations/
SystemOverviewaus.

=» Eine komplett neue Systemubersicht Achszeile erscheint.

4.), Nach einem Klick in der neuen Visualisierung tragen Sie im

"Eigenschaften"-Fenster als Wert firm_Input_AxisIndex den
Index der definierten Achse ein.

5.) Das neue Achs-Interface fir die Systemibersicht kann nun in

der Grosse angepasst und positioniert werden.

6.) Ubersetzen Sie das SPS-Projekt neu und gehen Sie Online.

Obige Schritte miissen fiir alle, zusétzlich zum Projekt hinzuge-
fiigten Achsen wiederholt werden.

31.07.2020

35

CXA_MotionInterface.library
Achs-Interface

Systemiibersicht Navigation Eine Einzelachs-Ubersichtanzeige ist durch Klicken auf die Schalt-
flache mit zwei Pfeilen "<<", die sich unter der Details-Spalte in der
Achstabelle befindet, erreichbar. Aus der Achsiibersichtanzeige ist
die Navigation zur Positions-Betriebsartenanzeige moglich.

4] Overviewixes o

Clearbme | [RUN | | Overview Axes |
Errar D _-' ‘-‘ _
i is Number Mainietdl | %] Matian
Diagnosis Text | ._- N | Dhomnviea <5
fxica Dkl ! Clagnoaia “Stata] SetupMade
Aois: 0 RSB Ere Stams: | Foswon: | o Erabls
[- J HellaMotian = ModePdshs | 42.00 lu—c! i L
Eremr | Ais Type: Eurgahd!: Winkacaty i3 Aee| 10 | Jog*
VIRTUAL 000 |~ Daal 10 | Jeg
Dipgnosis ManDetsl . nslafe | Accel
: stawmL | D00 StepWidh| 7 | Iner
I Foga: 1 el Statua: [Poseon: | - Yol 1o |G
X EreaT abie: ModePesRed | - 5.00 4 ; "-E =
Axia Type: [Evsasn. | . Vilpch: e Joge
'[L e [Esransar 00 | e T
Diagnosis MainDetsl = PL nstate | Accel:
0.00, StepWidh| 1 | Imer
] Amis_Cererview [von O0A_Hotion] ® ;: (1] m_—vk[wtﬁ!ﬁl_wn!rdmﬂml ®
| AxisOverview [~ | ’J Positionmode |
Momeof oxs | HelloMolicn |_'a*'~.pm-m§ aas 0 | M of axi "uumum | DveMe [Axs0 |
Emor () Enorip | DEWICE JERRCH._ | Choat emen Evror () ErrueD | DEVICE_EFROR] ClaremxQ
T

SiopDecel [_mW__]
T -
Kinemae [
GantryMaster [1

Poson [&0]| k. posmon [

Jaﬂ:ﬂ@c .] sialm

s Actuzal command [80| [DORE]
ﬁ"‘ Last commignd [80) [DORE]
€ o T B Command E.ﬁ"u‘.-
Positon mose Deve Hat [; B owend | |@ Orive enates .
ErableCychcSeannindl] Disabie 0 | | CSrsmsmi =] PLCopen siae

UpdaieEvervinpat

fetitrs 0 pastis O H e] Actusl operaiing mode
_Ima Rergger Coblade Aﬁ:ﬂ;}mnl Dwri:hm‘:

Abb. 7: Systemiibersicht Navigation

1.3.7 Achs-Interface Anwender-Erweiterung
1.3.7.1 Uberblick

Die arAxisCtrl_gb[] und arAxisStatus_gb][] Strukturen kénnen
durch den Anwender erweitert werden, um das Achs-Interface an
spezielle Applikationen anzupassen.

36 31.07.2020

Empfohlene Vorgehensweise

o

CXA_MotionInterface.library
Achs-Interface

Die arAxisCtr]_gb[J- und arAxisStatus_gbf J-Strukturen des
Anwender-Interface sind als Basistypen mit dem Prafix "MB_" in
der geschlossenen Bibliothek CXA_Motioninterface.compiled-lib-
rary definiert und daher fiir den Anwender nicht zugéanglich.

Um Erweiterungen zu ermdglichen, ist es notig, eigene Strukturen
zu definieren, die die Strukturen "MB_" erweitern. Die erweiterteten
Strukturen sind durch den Prafix "TE " gekennzeichnet und
befinden sich in der offenen Bibliothek CXA_Motioninferfa-
ceUser.library.

Um die Anwendererweiterungen auszufiihren, ist es notwendig die
Bibliothek CXA_MotioninterfaceUser.library anzupassen. Zur
Nachvollziehbarkeit ist es notwendig und dringend empfohlen der
angepassten Bibliothek einen neuen Namen zu geben, z.B.
CXA_MotionInterfaceMyCompany.library. Im Folgenden wird als
Bibliotheksname CXA_MotionInterfaceMyCompany.library ver-
wendet.

Arbeitsablauf 1.) Im Bibliotheksverwalter die CXA_MotionInterfaceUser.library
selektieren. Rechte Maustaste -> "Bibliothek exportieren"
anwabhlen. Speicherort wahlen und einen neuen Namen z.B.
CXA_MotionInterfaceMyCompany.library vergeben. Nacht-
ragliches Umbenennen ist ebenfalls moglich.

2.) Mit einer zweiten Instanz von ctrlX PLC Engineering die Bibli-
othek CXA_MotioninterfaceMyCompany.library 6ffnen. In den
Projektinformationen das Feld "freigegeben" abwahlen, die
weiteren Felder anpassen und in den Eigenschaften den
Schlussel "Placeholder" Idschen.

3.) Im Anwendungsprogramm (erste Instanz von ctrIX PLC Engi-
neering) im Bibliotheksverwalter die CXA_MotionInterfa-
ceUser.library entfernen und dafiir CXA_MotioninterfaceMy-
Company.library einbinden.

4.) Anpassungen in der Bibliothek vornehmen. Am Ende aus-
fuhren: "Datei"->"Projekt speichern und ins Bibiliotheksrepo-
sitory installieren".

5.) Im Anwendungsprogramm (erste Instanz von ctrIX PLC Engi-
neering) die Anpassungen testen. Debuggen im Code aus
der Bibliothek ist auch méglich.

6.) Schritte 4. und 5. wiederholen bis die Funktion fehlerfrei ist.

@ Sobald ein Update der CXA_MotioninterfaceUser.library zur Verfii-
1 gung steht, kénnen Anderungen mit "Projekt"->"Vergleichen" in die
CXA_MotioninterfaceMyCompany.library ibernommen werden.
® Dje CXA_MotioninterfaceUser.library verwendet Fehlercodes mit
1 "CXA_TABLE". Diese sind in der Produktdokumentation zu finden.

Wenn in den Anwendererweiterungen weitere Fehlercodes beno-

tigt werden, kénnen djese frei definiert werden, mdssen aber mit

"USER1_TABLE..USER10_TABLE" gemeldet werden.

31.07.2020 37

CXA_MotionInterface.library
Achs-Interface

ML_AxsGetlpoValues

Hinweise zur Implementation von
Anwendererweiterungen

Dieser Abschnitt zeigt, wie das Achs-Interface durch Hinzufligen
der ML_AxsGetlpoValues-Funktionalitat erweitert wird. Die Funk-
tion ML_AxsGetlpoValues ermdglicht es, die interpolierten Werte
einer Achse abzufragen. Die Istwerte sind bereits in der Basis-
Struktur als z.B. "ActualPosition" vorhanden.

Die folgenden neuen Ein- und Ausgange werden definiert:

B arAxisCtrl_gb[].Admin.EnableReadlpo
B arAxisStatus_gb[].Data.lpoPosition
B arAxisStatus_gb[].Data.lpoVelocity

Im Programm-Template "ctrIX CORE Axis/Kin-Interface" sind fol-
gende anwenderspezifische Erweiterungen implementiert:

® Jog-Funktionalitat als "SetupMode"

® "RetriggerOpMode" um eine Betriebsart erneut anzusteuern
z.B. MoveRelative mit der gleichen Distanz

B Eine benutzerdefinierte Betriebsart "MODE_XX_USER_0"

Im Folgenden wird davon ausgegangen, dass die im Programm-
Template "ctrlX CORE Axis/Kin-Interface" bereits vorbereitete
Struktur verwendet wird. Es wird nur beschrieben, welche Ande-
rungen in den dort vorgegebenen POUs notwendig sind.

Die Anwendererweiterungen wurden mit Hilfe der objektorientierten
Erweiterungen von ctrIX PLC Engineering implementiert. Dabei
sind einige Besonderheiten zu beachten:

® Der Funktionsbaustein (FB) TE_AxisInterface ist vom Basis-FB
MB_AxisInterfaceBase abgeleitet. Uber das Schliisselwort
"SUPER" kann der Basis-FB bzw. Methoden/Aktionen des
Basis-FB aufgerufen werden. Zum Beispiel wird an diversen
Stellen tiber SUPER”.mSetError(...); die Methode mSetError
des FB MB_ AxisInterfaceBase aufgerufen um Fehler in das
Diagnosesystem einzutragen

® Innerhalb des FB TE_AxisInterface kann auf die Daten von arA-
xisCtrl_gb Uber die Eingange AdminCtrlExt, PosModeCtrlExt
usw. bzw. auf arAxisStatus_gb tUber AdminStatusExt, DiagSta-
tusExt usw. zugegriffen werden.
Die Eingdnge AdminCtrl (ohne Ext) usw. gehéren zum Basis-FB
und sollten nicht genutzt werden

® Die Eingange des FB TE_AxisInterface sind als "REFERENCE
TO" definiert. In der Methode minitExtension werden die Refe-
renzen einmalig initialisiert und missen dann beim zyklischen
Aufruf des FB nicht mehr Gbergeben werden

38

31.07.2020

CXA_MotionInterface.library
Achs-Interface

B Wenn die Basisstrukturen TE_AXIS_CONTROL_TYPEO1 und
TE_AXIS_STATUS_TYPEO1 mit zusatzlichen Unterstrukturen
erweitert werden sollen, sind folgende zusatzliche Schritte zu
der weiter unten beschriebenen Vorgehensweise notwendig
(siehe SetupMode und SetupModeAck als Beispiele):

- Neue Elemente in TE_AXIS CONTROL_TYPEO1 bzw.
TE_AXIS_STATUS_TYPEO1 eintragen

- Am FB TE_AxisInterface die zusatzlichen Eingange als
REFERENCE TO hinzufiigen

- In der Methode minitExtension des FB TE_AxisInterface die
Referenzen initialisieren

1.3.7.2 Erweitern der arAxisCtrl_gb[]-Struktur

Um die zusatzliche Funktionalitat der arAxisCtrl_gb[] Struktur hin-
zuzufiigen, muss der Anwender eine neue Struktur anlegen, die
Unterstrukturen von den bereits existierenden Struktur ableiten und
dann die neuen Elemente hinzufligen. Im Programm-Template
"ctriIX CORE Axis/Kin-Interface" ist eine Struktur TE_AXIS_CON-
TROL_TYPEO1 und die Unterstrukturen TE_AXIS_ADMINISTRA-
TION usw. bereits vorbereitet.

Nehmen Sie die folgenden Schritte vor, um die Funktionalitat der
TE_AXIS_ADMINISTRATION Struktur zu erweitern:

1.) Mit ctrlX PLC Engineering die Bibliothek CXA_MotionlInterfa-
ceMyCompany.library 6ffnen

2. , Offnen Sie die Struktur TE_AXIS_ADMINISTRATION, Ordner
AxisInterfaceUser/DUTs/Control.

3.) Deklarieren Sie die folgende Variable

B FEnableReadIpo: BOOL:=TRUE;

1.3.7.3 Erweitern der arAxisStatus_gb[] Struktur

Erweitern Sie die arAxisStatus_gb[]-Struktur entsprechend den
Schritten in "Erweitern der arAxisCtrl_gb[] Struktur". Die folgenden
Schritte stellen die Vorgehensweise kurz dar:

1.), Offnen Sie die Struktur TE_AXIS_DATA, Ordner AxisInterfa-
ceUser/DUTs/Status.

2.) Deklarieren Sie die folgenden Variablen

B TpoPosition: LREAL;
B TpoVelocity: LREAL;

1.3.7.4 Erweitern des Funktionsbausteines

Der letzte Schritt im Ablauf der Anwender-Erweiterung ist, den
Funktionsbaustein so zu erweitern, dass die neuen Elemente
benutzt werden kénnen.

31.07.2020 39

CXA_MotionInterface.library

Achs-Interface

1.) Deklarieren Sie im FB TE_AxisInterface die folgende Vari-

able:

stAxsGetIpoValuesData: ML AxsGetIpoValues-
Data;

Im FB TE_AxisInterface kénnte die Funktion so ausprogram-
miert werden:

IF AdminCtrlExt.EnableReadIpo = TRUE THEN

stAxsGetIpoValuesData.In.AxisName :=
AdminCtrlExt.Config.Axis.AxisName;

ML AxsGetIpoValues (stAxsGetIpoValuesData); //
call motion function

DataStatusExt.IpoPosition := stAxsGetIpoVa-
luesData.Out.Position;

DataStatusExt.IpoVelocity := stAxsGetIpoValu-
esData.Out.Velocity;

END IF

Ubersetzen Sie das Projekt neu und (iberpriifen Sie es auf
Programmierfehler.

4.) Laden Sie das Projekt in die Steuerung.

Die neuen Eingangs- und Ausgangs-Elemente sind nun ein Teil der
Achs-Interface-Struktur und kénnen Uber die Variablen in
Global_AxisInterface betrachtet werden.

40

31.07.2020

CXA_MotionInterface.library

Achs-Interface

Watch 1
Expressicn Type Value
= ﬂ Global_sxisInterface.arfxis Ctrl_gh[0] TE_AXIS_COMNTROL_TYPED1
= & Admin TE_AXIS_ADMIMISTRATIOM
+ % Config MB_AXIS_ADMIM_COMFIG
%% ClearError BOICIL
_OpMode ME_AXIS_MCDE ModePosRel

+ %% OpModeBis
*% Retrigger0OpMode

TE_AXIS_MODE_BITS
BOCL

% FEnableReadIpo

=

BOOL

+ & StopMaode
+ @@ PosMode
+ & CoordMode
+ @ GantryMode
+ & SetupMode
= “ Global_fxisInterface.arfxisStatus_ghl0]

TE_AXIS_STOP_MODE
TE_AXIS_POSITIONING
ME_AXIS_COORDINATED
ME_AXIS_GANTRY
TE_AXIS_SETUP_MODE
TE_AXIS_STATUS_TYPED1

+ & SetupMode

¥ @ Admin TE_AXIS_ADMIN_STATUS
= @ Data TE_AXIS_DATA
& Aborting BOOL
d ActualAcceleration LREAL 0
ActualPosition LREAL 307.52000000000004
& ActualTorgue LREAL 0
d Actualvelocity LREAL 10
CoordinatedMotion BOOL FALSE
Disabled BOOL
d DiscreteMotion BOICIL TRUE
d@ DistLeft LREAL 0
@ ErrorStop BOOL FALSE
PLCopenState STRING(S0) DISCRETE_MOTION'
d Standstill BOOL FALSE
StandStillPending BOOL FALSE
’@ IpoPaosition LREAL 307.40000000000003
4% IpoVelociy LREAL 10
+ & Diag TE_AXIS_DIAGNOSIS

TE_AXIS_SETUP_MODE_STATUS

Abb. 8: arAxisCtrl_gb und arAxisStatus_gb Strukturen mit Anwender-Erweiterungen

1.3.7.5 Anwendung der benutzerdefinierten Betriebsarten
Bei benutzerdefinierbaren Betriebsarten werden die Motion-Kom-
mandos in der anwenderspezifischen Erweiterung in der Bibliothek
CXA_MotioniInterfaceMyCompany.library implementiert.
Die folgenden Schritte zeigen an einem Beispiel wie Sie die benut-
zerdefinierten Betriebsarten nutzen kénnen.

31.07.2020 41

CXA_MotionInterface.library

Achs-Interface

1.3.8
1.3.8.1

1

Fligen Sie eine neue Datenstruktur fir die Sollwerte der
benutzerdefinierten Betriebsart (Name z. B.
TE_AXIS_USERMODE1) unterhalb des Ordners AxisiInter-
face/Type/Control hinzu.

Definieren Sie die Elemente dieser Datenstruktur (z. B. Vel:
REAL, Acc:REAL, DEC: REAL).

Figen Sie am Ende der Datenstruktur TE_AXIS_CON-
TROL_TYPEO1 oder TE_AXIS_CONTROL_TYPEO2 ein
neues Element vom Typ der o.g. Datenstruktur ein (Beispiel:
UserMode1: TE_AXIS_USERMODE1;).

Figen Sie am Ende der VAR_INPUT Deklaration im FB
TE_AxisInterface einen neuen Eingang ein (Beispiel: MyMo-
deUser1Ext : REFERENCE TO TE_AXIS_USERMODEH1;).

Initialisieren Sie die Referenz des neu angelegten Einganges
in der Methode minitExtension des TE_AxisInterface (Bei-
spiel: MyModeUser1Ext REF= arAxisCtrl_gb[index].User-
Mode1;).

Programmieren Sie das gewilinschte Motion-Kommando in
der Methode mUserModes. Die Methode mUserModes des
TE_AxisInterface uberschreibt die Methode des Basisbaus-
teines MB_AxisInterfaceBase und wird von diesem aufge-
rufen.

Ubersetzen Sie das Projekt neu und (iberpriifen Sie es auf
Programmierfehler.

Laden Sie das Projekt in die Steuerung und starten Sie die
SPS.

Jetzt kdnnen Sie die neue benutzdefinierte Betriebsart
anwahlen und das Motion-Kommando wird mit den iberge-
benen Sollwerten wirksam.

HowTo: Typische Anwenderaktivitaten

Zugriff auf Achsdaten

Die folgenden Daten sind verfugbar (Name = jeweiliger Achs-
name):

B arAxisCtrl_gb[Name.AxisNo] => Steuerstruktur des Achs-Inter-
face

B arAxisStatus_gb[Name.AxisNo] => Statusstruktur des Achs-
Interface

B arAxisStatus_gb[Name.AxisNo].Data => Istwerte und Statusin-
formationen

Azyklische Zugriffe auf Achsdaten sind Uber den ctrlX DataLayer
mit den Funktionsbausteinen DL_ReadNode und DL_WriteNode
moglich.

42

31.07.2020

1.3.8.2

1.3.8.3

1.3.8.4

CXA_MotionInterface.library

Achs-Interface

Anpassung der maximalen Achsanzahl

o

Die Achsstrukturen kénnen an die tatsachlich vorhandene Achsan-
zahl angepasst werden.

Die Bibliothek CXA_MotioninterfaceUser erlaubt Anpassungen
Uber die Bibliotheksparameter "MOTIF_CONFIG".

Mit den Konstanten "MIN_AXIS_INDEX" und "MAX_AXIS_INDEX"
kann die Grésse der Strukturen passend zur Anwendung gewahlt
werden.

Wird das Kinematik-Interface verwendet, darf die Konstante
"MAX_AXIS_INDEX" nicht grosser als "Global MB_Kininterface-
Vars.MB_KINIF_MAX_AXIS_INDEX" gewahlit werden. Es kommt
ansonsten zu einem Initialisierungsfehler beim Start des SPS-Pro-
grammes.

Anpassung der Zuordnung Achsname<>Achsindex

Achse hinzufiigen

Das Achslinterface arbeitet mit einem Achsindex zur Adressierung
in den Achsstrukturen. Die Motion-Firmware arbeitet mit dem
Achsnamen. Die Zuordnung Achsname<>Achsindex kann mit ver-
schiedenen Methoden erfolgen.

Die Bibliothek CXA_MotionInterfaceUser erlaubt eine Auswahl der
Methode Uber die Bibliotheksparameter "MOTIF_CONFIG".

Zuordnung Achsname<>AchsIndex in
MOTIF_CONFIG.CFG_MODE_AXS

B AUTO: Auslesen des Datalayer Knotens "motion/axs" und
Zuweisung des Achsindex in der hier vorgefundenen Reihen-
folge

B GLOB_VAR: in der Application wird eine Liste von
"MB_AXISIF_REF" definiert und an das Programm "TE_AxisIn-
terfaceMainProg" (ibergeben. Siehe "GlobalAxisDefines" im
Programm-Template "ctrlX CORE Axis/Kin-Interface".

Eine Achse kann in der Bedienoberflache im Bereich Motion ange-
legt werden oder auch z.B. aus dem SPS-Programm erzeugt
werden.

Fir eine hinzugefugte Achse muss ggf. eine Initialisierung
bestimmter Strukturelemente des Achs-Interface vorgenommen
werden. Dies geschieht bei Verwendung des Programm-Template
"ctrIX CORE Axis/Kin-Interface" automatisch beim Erreichen des
Zustandes "Running". Die Zuordnung Achsname<>AchsIndex
muss erganzt werden, wenn MOTIF_CONFIG.CFG_MODE_AXS =
GLOB_VAR konfiguriert ist. Siehe auch oben # weifere Informati-
onen auf Seife 43.

31.07.2020

43

CXA_MotionInterface.library

Achs-Interface

1.3.8.5 Achse entfernen/umbenennen

Eine vorhandene Achse kann in der Bedienoberflache im Bereich
Motion oder Uber diverse Schnittstellen geléscht bzw. umbenannt
werden.

Wird eine Achse umbenannt, muss der Zugriff Gber die Control- u.
Statusstrukturen "arAxisCtrl_gb[geanderterAchsname.AxisNo]"
und "arAxisStatus_gb[geanderterAchsname.AxisNo]" innerhalb
des SPS-Programmes angepasst werden.

Die Zuordnung Achsname<>AchsIndex muss angepasst werden,
wenn MOTIF_CONFIG.CFG_MODE_AXS = GLOB_VAR konfigu-
riert ist. Siehe auch oben # weitere Informationen auf Seite 43.

1.3.8.6 Achs-Interface Erweiterungen

Das Achs-Interface erlaubt fast beliebige Erweiterungen der Achs-
Interface-Strukturen. Es kdnnen zuséatzliche Unterstrukturen einge-
figt und auch die vorhandenen Unterstrukturen erweitert werden.

Die folgenden Strukturelemente sind als Anwendererweiterungen
in der AxisCtrl-Struktur beispielhaft programmiert:

® Admin: Erweiterung der vorhandenen Unterstruktur in der
AxisCtrl-Struktur

- ReTriggerOpMode: Neustart der eingestellten Betriebsart, z.
B. MoveRelative mit der gleichen Distance starten

B SetupMode: zusatzliche Unterstruktur in der AxisCtrl-Struktur
- Enable: Freigabe Einrichtbetrieb
- JogPlus: Tippen +
- JogMinus: Tippen -
- Vel: Tippgeschwindigkeit
- DynValues: Tipp(brems)beschleunigung und Ruck.

- Joglncr: TRUE -> inkrementelles Tippen. Eine positive
Flanke an JogPlus oder JogMinus vertippt eine Schrittweite

- StepWidth: Schrittweite fir das inkrementelle Tippen

Die folgenden Strukturelemente sind als Anwendererweiterungen
in der AxisStatus-Struktur beispielhaft programmiert:

®m SetupMode: zusatzliche Unterstruktur in der AxisStatus-Struktur
- EnableAck: Einrichtbetrieb ist aktiv

Der Code zu diesen Erweiterungen ist in den Aktionen des Baust-
eins TE_AxisInterface() im Ordner "AxisInterfaceUser/POUS" zu
finden. Die dazugehdrigen Strukturen sind in den Ordnern "AxisIn-
terfaceUser/DUTs/Control" und "AxisInterfaceUser/DUTs/Status" zu
finden.

Es kénnen eigene Erweiterungen hinzugefiigt werden (siehe dazu
~ , Seite).

44

31.07.2020

1.4 Kinematik-Interface

CXA_MotionInterface.library

Kinematik-Interface

1.4.1 Einfihrung und Ubersicht

Das Kinematik-Interface biindelt und erweitert PLCopen-Bewe-
gungsfunktionsbausteine und stellt ein einfach zu bedienendes
Interface fur die Kinematikfunktionalitat zur Verfiigung.

Weniger Code und leistungsfahigere Kommandos beschleunigen
die Programmentwicklung von Applikationen.

Das Kinematik-Interface enthalt Steuersignale und Parameter fur
die verschiedenen Betriebsarten der Kinematiken.

Tab. 30: Programmorganisationseinheiten des Kinematik-Interface in der Bibliothek CXA_Motioninterface

Anwendungsgebiet (Ordner in der Bibliothek CXA_MotionInterface)

POUs
Kinlnterface/POUs

~ , Seite

~ | Seite

KinlInterface/DUTs

KinInterface/GlobalVariables

Beschreibung

Wird zur Initialisierung des Kinematik-Interfaces flr
jede Kinematik benutzt. Der Funktionsbaustein
muss nur einmal beim Programmestart bzw. bei
jeder Phasenumschaltung vom Parametriermodus
in den Betriebsmodus aufgerufen werden

Wird zur Konfiguration des Kinematik-Interfaces fir
jede Kinematik benutzt. Der Funktionsbaustein
muss zyklisch (im Motion-Takt oder langsamer als
der Motion-Takt) aufgerufen werden, solange man
sich im Betriebsmodus befindet

Informationen zu den Datenstrukturen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
onlinterface im Ordner "Kinlnterface/DUTS".

Informationen zu den globalen Variablen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
oninterface im Ordner "KinlInterface/GlobalVaria-
bles".

31.07.2020

45

CXA_MotionInterface.library

Kinematik-Interface

i

X

Kinematik-Interface wird als Programmiertemplate oder als stand-
alone-Interface fir die Kinematikfunktionalitat zur Verfligung
gestellt.

Wenn es mit dem Programmiertemplate "ctriX CORE Axis-/Kin-
Interface” benutzt wird, muss sich der Anwender nicht mit Instanz-
Aufrufen der Funktionsbausteine innerhalb des Projektes
befassen. Diese Funktionalitat ist komplett in das Template infeg-
riert und der Anwender muss nur ein paar Zeilen Code schreiben.

Wird hingegen das Kinematik-Interface als eigenstandige Funktio-
nalitat benutzt, erfordert dies das Anlegen von Instanzen von
beiden Funktionsbausteinen fir jede Kinematik durch den
Anwender.

Das Kinematik-Interface nutzt intern das Achs-Interface. Es ist also
zwingend erforderlich auch das Achs-Interface aufzurufen.

Tab. 31: Programmorganisationseinheiten des Achs-Interface in der Bibliothek CXA_MotioninterfaceUser

Anwendungsgebiet (Ordner in der Bibliothek CXA_MotionInterfaceUser)

POUs

KinInterfaceUser/POUs

TE_KinematicsInitAllKinematics

Beschreibung

Initialisierung des Kinematik-Interfaces fir alle
Kinematiken. Ruft intern den # , Seijte fiir jede
Kinematik auf

TE_Kinematicsinterface erweitert # , Seite Hier kann das Kinematik-Interface fir eine einzelne

TE_KinInterfaceMainProg

KinInterfaceUser/DUTs

KinlnterfaceUser/GlobalVariables

Kinematik durch den Anwender erweitert werden
A Kapitel 1.4.7 ,Kinematik-Interface Anwender-
Erweiterung “ auf Seite 75. Der Funktionsbaustein
muss zyklisch (im Motion-Takt oder langsamer als
der Motion-Takt) aufgerufen werden, solange man
sich im Betriebsmodus befindet

Das Hauptprogramm fiihrt bei Erreichen des Modus
"Running" die Initialisierung aus und nach erfolgrei-
cher Initialisierung wird der TE_Kinematicsinterface
fur alle Kinematiken aufgerufen

Weitere Informationen siehe Online-Dokumentation
in der Bibliothek CXA_MotioninterfaceUser im
Ordner "KinlnterfaceUser/POUs".

Informationen zu den Datenstrukturen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
oninterfaceUser im Ordner "KinIlnterfaceUser/
DUTs".

46

31.07.2020

Global_Kinematics_Interface

KinInterfaceUser/Visualizations

~ Kapitel 1.4.6.4 ,Kinematik-Interface Visualisie-
rungen “auf Seite 73

KinInterfaceUser/ _Examples

PROGRAM Example_KinlfApplicationPart

Projektierungshinweis/Laufzeitbedarf

CXA_MotionInterface.library

Kinematik-Interface

Hier ist das eigentliche Kinematik-Interface mit den
Arrays arKinCtrl_gb und arKinStatus_gb zu finden.
Die weiteren Variablen werden intern bzw. von den
Visualisierungen genutzt.

Siehe auch A Kapitel 1.4.4 ,Kinematik-Interface -
Globale Variablen “ auf Seite 66

Inbetriebnahmevisualisierungen, z.B. zum Ver-
tippen der Achsen

Beispielcode zur Anwendung des Kinematik-Inter-
faces. Im Programm-Template "ctrlX CORE Axis-/
Kin-Interface" ist dieser Beispielcode auch ent-
halten.

Fir jede Kinematik des Kinematik-Interface wird der Kinematik-

Interface-Funktionsbaustein aufgerufen. Dieser Aufruf benétigt
Laufzeit der SPS. Diese Laufzeit variiert je nach Kinematiktyp und
Kinematikbetriebsart. Zusatzlich muss fiir jede Achse der Achs-
Interface-Funktionsbaustein aufgerufen werden.

/ pata Interfage \

FUNCTION_BLOCK TE_Kinematicsinterface EXTENDS MB_KinematicsinterfaceBase

AdminCtrl

Kinematics structures | D CoordCtrl

TE_KinematicsInterface

AdminStatus
DataStatus
DiagStatus

for input data

TOpMoade
bStart
udiCycleCounter

TR T T

AdminCtribxt
. . Setup Ctribxt
arKinStatus_gb[i] it
SetupMode
. i AdminStatusExt
Kinematics structures DataStatusExt
DiagStatusExt
SetupModeAdk

for output data 'I

Abb. 9: Kin-Interface Datenstruktur des Interface

Tab. 32: Zuordnung Anwender-Interface zur Kinematik-Interface-Datenstruktur:

Anwender-Inter- Typ
face

arKinCtrl[]_gb TE_KINEMATICS_CON-

TROL_TYPEO1

arkinStatus[]_gb TE_KINEMA-

TICS_STATUS_TYPEO1

Beschreibung

Steuerungsstruktur inklusive Sollwerte und Vari-
ablen zum Aktivieren der Betriebsarten

Statusstruktur inklusive Diagnoseinfo, Quittungen
fur die Betriebsarten, Istwerten und Statusinforma-
tion der App rexroth-motion.

31.07.2020

47

CXA_MotionInterface.library

Kinematik-Interface

Watch 1
Expression Type Value
= (@ Global_Kinematics_Interface.arkinCtrl_gb[l] = TE_KINEMATICS_CONTROL TYPEO1 Expressicn
= ¢ Admin TE_KINEMATICS_ADMIMISTRATION = ﬂ Global_Kinematics_Interface.arKinStatus_gb{0]
= *B Config MB_KINEMATICS_ADMIN_CONFIG = & Admin
* § Group ME_AXESGROUPIF_REF 4p _OpModefck
@ DiagNbrRefreshTime TIME T=200ms Hy Active
@ EnableCyclicScanning BOOL A Name
& MotionSync BOOL 4y LastCmdld
*p ClearErrar BOOL # ActiveCmdid
*§ RetriggerOpMode BOOL FAl @ ActiveCmdSource
@ _OpMode MB_KINEMATICS_MODE ModeCoordPosLinRel @ ActiveCmdStatus
= *p _opModeBits TE_KINEMATICS_MODE_BITS @ CmdDone
MODE_COORD_AB BOOL 4 LastCmdstatus
$ MODE_COORD_AH BOOL + 4p _OpModeAckSts
% MODE_COORD_CONTINUE BOOL = & Diag
@ MODE_COORD_EXTERNAL_FE BOOL @ Error
% MODE_COORD_INTERRUPT BOOL @ ErrorlD
 MODE_COORD_POS LIN_ABS BOOL + @ Errorldent
 MODE_COORD_POS LIN_REL BOOL 4 NumberMain
% MODE_COORD_STANDEY BOOL @ NumberDetail
= # CoordMode TE_KINEMATICS_COCRDINATED @ Message
+ 3 DynValues ML_iDynLimits = & Data
*p BlendingStartD1 LREAL 1] # Acceleration
“% BlendingEndD2 LREAL 0 @ Disabled
*$ PCSSetName STRING " @ ErrorStop
*§ PCSToolSetName STRING @ Jerk
@ ActivateBlending BOOL @ Maoving
@ ActivatePCs BOOL @ PLCopenstate
@ ActivatePCSTool BOOL * @ PositionBaseCoord
+ @ Point REFERENCE TO ARRAY [0...(MB_KINIF_NO... @ Standby
@ VelodtyQverride LREAL 100 @ Stopping
= @ SetupMode TE_KINEMATICS_SETUP @ Velodty
@ Enable BOOL = @ SetupMode
% JogMode TE_KINEMATICS_JOGMODE IM_STER @ EnableAck
* § JogPlus ARRAY [0, (MB_KINIF_NOF_POINT - 1)] ©...
+ @ JogMinus ARRAY [0..(MB_KINIF_NOF_PCINT - 1)] O...
@ Increment LREAL 1
+ @ DirectionVector ARRAY [0..(MB_KINIF_NOF_PCINT - 1)] O...
JogVectorPls BOOL
@ JogVectorMinus BOOL
+ @ Dynvalues ML _iDynLimits

Abb

EnableCyclicScanning

y |

Type Value
TE_KINEMATICS_STATUS_TYPEO1

TE_KINEMATICS _ADMIN_STATUS

MB_KINEMATICS_MODE ModeCoordPosLinkal

BOOL

STRING(15) Mover'

ULINT 88

ULINT 88

STRING(SD) KinTf.mPosModeLinRd Use...
STRING(S0)

BOOL

STRING(S0)

TE_KINEMATICS_MODE_STATUS_BITS
TE_KINEMATICS _DIAGNOSIS

BOOL

ERROR_CODE

ERROR_STRUCT

DVWORD 16200000000
DVWORD 16200000000
STRING(50) -
TE_KINEMATICS _DATA

LREAL

BOOL

BOOL

LREAL

BOOL

STRING(S0)

REFERENCE TO ARRAY [0..(MB_KINIF...
BOOL

BOOL

LREAL

TE_KINEMATICS_SETUP_STATUS

BOOL

10: Uberblick (iber die Datenstrukturen des Kinematik-Interface

Benutzen Sie die GroupNo der MB_AXESGROUPIF_REF-Struktur
als Index fiir das Feld, z. B. arKinCtrl_gb/Mover.GroupNo].Admin.

usw.

Die interne Handhabung einiger Sollwerte kann durch das
arKinCtrl_gb[].Admin.Config.EnableCyclicScanning Element

gesteuert werden.

Wird "EnableCyclicScanning" auf TRUE gesetzt, werden einige
Sollwerte der arKinCtrl_gb[]-Struktur zyklisch gescannt und sofort

wirksam, wenn sich ein Wert andert.

48

31.07.2020

= “ Global_Kinematics_Interface.arkinCtrl_gh[0]

CXA_MotionInterface.library

Kinematik-Interface

TE_KINEMATICS _CONTROL_TYPEO1

= ¢ Admin TE_KIMEMATICS_ADMIMISTRATION
= %% Config ME_FIMEMATICS_ADMIM_COMFIG
+ @ Group MB_AXESGROUPIF REF
@& DiagMNbrRefreshTime TIME T#200ms
(@ EnableCyclicscanning BOOL
@ MotionSync BOOL
4% ClearError BOOL
%% RetriggerOpMode BOCL
_OpMode MB_KINEMATICS_MODE ModeCoordPosLinRel

+ % OpModeBis
= @& CoordMode

TE_KINEMATICS_MODE_BITS
TE_KINEMATICS_COORDINATED

- % DynValues ML_iDynLimits
@ Velocity LREAL 10
Acceleration LREAL 10
Deceleration LREAL 10
@ JerkhAcc LREAL 0
d@ JerkDec LREAL 0
% BlendingStartD1 LREAL 0
4% BlendingEndD2 LREAL 0
4% pCsSetName STRING)
% PCSToolSetWame STRING :
ActivateBlending BOOL FALSE
@ ActivatePCS BOOL FALSE
@ ActivatePCSTool BOOL FALSE
+ @ Point REFEREMCE TO ARRAY [0..(ME_KIMI...
VeloctyOverride LREAL 100

+ @ SetupMode

TE_KINEMATICS_SETUP

Abb. 11: Zyklisch gescannte Elemente von arKinCtrl_gb[] sind hervorgehoben

y |

Bei der Aktivierung einer Betriebsart ((Admin._OpMode)
werden, unabhéngig von der Einstellung des "EnableCyclicS-
canning™Eingangs, alle Eingangsdaten gelesen

Wenn "EnableCyclicScanning” = TRUE, werden alle Eingangs-
daten, die griin hervorgehoben sind, zyklisch gelesen. Das
bedeutet, dass nach Aktivierung einer Betriebsart jede Ande-
rung der Werte sofort gelesen wird

Im Gegensatz dazu werden alle Eingangsdaten, die blau her-
vorgehoben sind, nicht zyklisch gescannt. Das bedeutet, dass
die Werte nur gelesen werden, wenn eine Betriebsart aktiviert
wird

Die Datenkonsistenz wird durch "EnableCyclicScanning”
(FALSE—Daten schreiben— TRUE) erreicht

Fur Inbetriebnahmezwecke stehen verschiedene IndralLogic-Visua-
lisierungen, basierend auf den Strukturelementen, die in diesem
Abschnitt beschrieben werden, in der Bibliothek CXA_Motioninter-
faceUser zur Verfigung.

31.07.2020

49

CXA_MotionInterface.library
Kinematik-Interface

Was ist neu bzw. geandert gegeniiber
der Version fiir MLC/MLD

Es wurden Teile des ereignisgesteuerten Kinematik-Interface
(Funktionsbaustein MB_KinematicsInterfaceType12) liber-
nommen. Die Strukturelemente sind zum Teil als Properties
implementiert. Die Unterstrukturen sind dann als Funktionsbau-
steine anstatt Strukturen implementiert um Properties nutzen zu
kdénnen. In einer Struktur ist eine Methode
arKinCtrl_gb[].Admin.mTriggerMoveCmd() implementiert.

Die Betriebsartenanwahl arKinCtrl_gb[].Admin._OpMode ist
nicht mehr als "UNION" implementiert sondern als Properties
umgesetzt. Bei der Ansteuerung uber Bits (_OpModeBits) ist
damit keine Mehrfachanwahl mehr maéglich.

Selten verwendete Elemente von arKinCtrl_gb[].Admin wurden
in arKinCtrl_gb[].Admin.Config verschoben (siehe Tabelle
unten).

Werte vom Typ REAL werden jetzt generell als LREAL in den
Strukturen definiert.

Es gibt keine KinData[] Struktur. Die aktuellen Istwerte und
einige Statusbits sind in arKinStatus_gb[].Data zu finden.

Tab. 33: Folgende Code-Anderungen sind bei einer Portierung von MLC/MLD mindestens notwendig

(Suchen/Ersetzen).
Code MLC/MLD
Kontrollstruktur arKinCtrl_gb[]
_OpMode.en
ModeCoordInterrupted
ModeCoordStopping
_OpMode.b
MODE_COORD_INTERRUPTED
MODE_COORD_STOPPING
Admin.Group
Admin.DiagNbrRefreshTime
Admin.EnableCyclicScanning
CoordMode.Velocity
CoordMode.Acceleration
CoordMode.Deceleration

CoordMode.Jerk

CoordMode.BlendingRadius

SetupMode.Velocity][]

Ersetzen durch

_OpMode

ModeCoordInterrupt
ModeCoordStandby

_OpModeBits
MODE_COORD_INTERRUPT
MODE_COORD_STANDBY
Admin.Config.Group
Admin.Config.DiagNbrRefreshTime
Admin.Config.EnableCyclicScanning
CoordMode.DynValues.Velocity
CoordMode.DynValues.Acceleration
CoordMode.DynValues.Deceleration

CoordMode.DynValues.JerkAcc
CoordMode.DynValues.JerkDec

CoordMode.BlendingStartD1
CoordMode.BlendingEndD2

SetupMode.DynValues.Velocity

50

31.07.2020

Code MLC/MLD
SetupMode.Acceleration[]
SetupMode.Deceleration]]

SetupMode.Jerk][]

SetupMode.Distance]]
Kontrollstruktur arKinStatus_gb]

Admin.MODE_COORD_UNGROUPED

Admin.MODE_COORD_CONTINUE

Admin.MODE_COORD_INTERRUPTED

Admin.MODE_COORD_EXTERNAL_FB

Admin.MODE_COORD_POS_LIN_ABS

Admin.MODE_COORD_POS_LIN_REL

Admin.MODE_COORD_STOPPING

CXA_MotionInterface.library

Kinematik-Interface

Ersetzen durch
SetupMode.DynValues.Acceleration
SetupMode.DynValues.Deceleration

SetupMode.DynValues.JerkAcc
SetupMode.DynValues.JerkDec

SetupMode.Increment

Admin._OpModeAck-
Bits. MODE_COORD_UNGROUPED

Admin._OpModeAckBits. MODE_COORD_CON-
TINUE

Admin._OpModeAckBits. MODE_COORD_INTER-
RUPT

Admin._OpModeAck-
Bits. MODE_COORD_EXTERNAL_FB

Admin._OpModeAck-
Bits. MODE_COORD_POS _LIN_ABS

Admin._OpModeAck-
Bits. MODE_COORD_POS_LIN_REL

Admin._OpModeAck-
Bits. MODE_COORD_STANDBY

® Diese Liste der Code-Anderungen ist nicht vollsténdig. Bei der Por-
1 tierung ist eine generelle Uberpriifung des Programm-Codes not-

wendig.

14.2 Kinematik-Interface - Funktionsbausteine

14.2.1 MB_ Kinematicsinit

Kurzbeschreibung

Der Funktionsbaustein MB_Kinematicslnit wird zur Initialisierung

des Kinematik-Interfaces fir jede Kinematik benutzt.

Der Funktionsbaustein muss nur einmal beim Programmstart oder
bei jeder Modusumschaltung von "Configuration” in "Running" auf-
gerufen werden. In der Vorlage "ctrIX CORE Axis/Kin-Interface" ist
dies bereits implementiert.

31.07.2020

51

CXA_MotionInterface.library
Kinematik-Interface

Schnittstellenbeschreibung

BOOL _ |Execute
STRING(15) _|KinName
UINT _JKinIndex

MB_KinematicsInit

MB_KINEMATICS_ADMINISTRATION _|AdminCtrl
MB_KINEMATICS_ADMIN_STATUS _| AdminStatus
MB_KINEMATICS_DIAGNOSIS _|DiagStatus _ _ _ _ _ _ _ __ _

Done|l BOOL
Active BOOL
Error| BOOL

ErrorlD : ERROR_CODE
Errorldent] | ERROR_STRUCT
AdminCtrl] MB_KINEMATICS_ADMINISTRATION
AdminStatus] MB_KINEMATICS_ADMIN_STATUS
DiagStatus] MB_KINEMATICS _DIAGNOSIS

Abb. 12: Funktionsbaustein MB_Kinematics/nit

Tab. 34: Schnittstellenvariablen MB_Kinematicsinit

I/O-Typ Name Datentyp
VAR INPUT Execute BOOL
KinName STRING(15)
Kinlndex UINT
VAR_OUTPU Done BOOL
T
Active BOOL
Error BOOL
ErrorlD ERROR_CODE
Errorldent ERROR_STRUCT
VAR_IN_OU AdminCtrl MB_KINEMA-
T TICS_ADMINIST-

AdminStatus

DiagStatus

RATION

MB_KINEMA-
TICS_ADMIN_STA
TUS

MB_KINEMA-
TICS_DIAGNOSIS

Kommentar

Start der Initialisierung durch positive Flanke
Name der zu initialisierenden Kinematik
Index in den Kinematik-Interface Strukturen

Wird gesetzt, wenn der FB die Bearbeitung
beendet hat

Wird gesetzt, wenn der FB aktiv ist (nicht im
Leerlaufbetrieb)

Zeigt an, dass ein Fehler in der FB-Instanz
aufgetreten ist

Kurzer Hinweis zur Fehlerursache
Detaillierte Information zum Fehler
Verwaltung der Kinematik

arKinCtrl_gb[].Admin

Status Verwaltung der Kinematik

arKinStatus_gb[]. Admin

Diagnoseinformationen der Kinematik

arKinStatus_gb[].Diag

52

31.07.2020

Funktionsbeschreibung

Fehlerbehandlung

Tab. 36: Fehlercodes MB_Kinematicsinit

ErroriD

INPUT_RANGE_ERROR

STATE_MACHINE_ERROR

INPUT_RANGE_ERROR

INPUT_RANGE_ERROR

o

CXA_MotionInterface.library
Kinematik-Interface

Es ist nicht moglich anstelle der einzelnen Strukturelemente
"AdminCitrl", "AdminStatus”, etc. die kompletten Strukturen
"MB_Kinematics_Control_Type01" und "MB_Kinema-

tics Status Type01" dem Funktionsbaustein zu libergeben.

Dies wurde vorgenommen, um der Anwender-Applikation spezielle
Erweiterungen zum bestehenden Code zu ermdglichen.

Deshalb werden die bendtigten Elemente von TE_KINEMA-
TICS _CONTROL_TYPEOT und TE_KINEMA-
TICS STATUS TYPEOT1 als separate Eingdnge tibergeben.

Tab. 35: Der Funktionsbaustein MB_Kinematics/init initialisiert die
folgenden Strukturelemente mit Standardwerten:

Administration Control

AdminCtrl._ OpMode ModeCoordAB
AdminCtrl.Config.Group.Group Kinlndex

No

AdminCtrl.Config.Group.Kin- KinName

Name
Administration Status

AdminStatus.Active TRUE fur aktive Kinematik

AdminStatus.Name KinName

Die Fehlercodes der intern benutzten Funktionsbausteine
DL_ReadNode und DL_BrowseNode zum Lesen von Datalayer
Knoten werden durchgereicht. Der Funktionsbaustein kann die fol-
genden Fehlercodes erzeugen:

Additional1 Additional2 Beschreibung

16#0A0F010 16#0C23014 Stringlange KinName ausser-

7 0 halb des gultigen Bereiches
[1..15]

16#0A0F010 16#0C23014 Fehler im Ablauf des Funkti-

7 1 onsbaustein

16#0A0F010 16#0C23014 Zu viele Achsen fir diese

7 2 Kinematik konfiguriert

16#0A0F010 16#0C23014 KinIndex ausserhalb des gul-

7 3 tigen Bereiches

[1..MB_KINIF_MAX_KIN_NU
MBER]

31.07.2020

53

CXA_MotionInterface.library

Kinematik-Interface
ErrorlD

INPUT_RANGE_ERROR

14.2.2
Kurzbeschreibung

Schnittstellenbeschreibung

Additional1 Additional2 Beschreibung
16#0A0F010 16#0C23014 Ungdlltiger Pointer arpAdmi-
7 4 nAXxisCtrl_gb fur mindestens

eine Achse

MB_KinematicsinterfaceBase

Der Funktionsbaustein MB_KinematicsinterfaceBase wird zur Kon-
figuration des Kinematik-Interfaces fiir jede Kinematik benutzt.

Dieser Funktionsbaustein muss zyklisch (im Motion-Takt oder lang-
samer als der Motion-Takt) aufgerufen werden solange man sich
im Modus "Running" befindet. In der Vorlage "ctrlX CORE Axis/Kin-
Interface" ist dies bereits implementiert.

MB_KinematicsInterfaceBase
AdminCtrl
CoordCtrl

REFERENCE TO MB_KINEMATICS_ADMINISTRATION
REFERENCE TO ME_KINEMATICS_COORDINATED

REFERENCE TO MB_KINEMATICS_ADMIN_STATUS
REFERENCE TO MB_KINEMATICS_DATA
REFERENCE TO MB_KINEMATICS_DIAGNOQSIS

AdminStatus
DatasStatus
DiagStatus

Abb. 13: Funktionsbaustein MB_KinematicsinterfaceBase

Tab. 37: Schnittstellenvariablen MB_KinematicsinterfaceBase

I/O-Typ Name
VAR _INP AdminCtrl
uT

CoordCitrl

AdminStatus

DataStatus

DiagStatus

Datentyp

REFERENCE TO
MB_KINEMATICS_ADMI-
NISTRATION

REFERENCE TO
MB_KINEMA-
TICS_COORDINATED

REFERENCE TO
MB_KINEMA-
TICS_ADMIN_STATUS

REFERENCE TO
MB_KINEMATICS_DATA

REFERENCE TO
MB_KINEMATICS_DIAG-
NOSIS

Kommentar
Verwaltung der Kinematik

arKinCtrl_gb[].Admin

Betriebsart koordinierte Bewegung
arKinCtrl_gb[].CoordMode

Status Verwaltung der Kinematik
arKinStatus_gb[].Admin

Istwerte und Status der Kinematik
arKinStatus_gb[].Data

Status Diagnose der Achse

arKinStatus_gb[].Diag

54

31.07.2020

Fehlerbehandlung

o

CXA_MotionInterface.library
Kinematik-Interface

Es ist nicht moglich anstelle der einzelnen Strukturelemente
"AdminCitrl", "CoordCitrl", etc. die kompletten Strukturen dber einen
Eingang dem Funktionsbaustein zu tibergeben.

Dies wurde gemacht um der Anwender-Applikation spezielle
Erweiterungen zum bestehenden Code zu ermdglichen.

Deshalb werden die bendtigten Elemente von "TE_Kinema-
tics_Control Type01"und "TE Kinematics Status TypeO71" als
separate Eingdnge tibergeben.

Zur Performanceoptimierung sind die Strukturen statt als
VAR_IN_OUT als VAR_INPUT mit REFERENCE TO ange-
schlossen. Damit reicht es einmalig die Eingdnge zu initialisieren.
Beim zyklischen Aufruf des Funktionsbausteins mtissen damit die
Strukturen nicht libergeben werden.

Der Funktionsbaustein Gberprift die Eingange von arKinCtrl_gb[]
und generiert intern die angeforderten Kommandos fir die Kine-
matik. Die Ausgange von arKinStatus_gb[] werden aktualisiert in
Abhangigkeit des Ergebnisses dieser Kommandos.

Zum Beispiel fuhrt das Setzen von
"arKinCtrl_gb[].Admin._OpMode" von "ModeCoordAb" auf "Mode-
CoordPosLinAbs" zu folgendem Ablauf:

® Alle zugeordneten Achsen werden Uber das Achs-Interface in
"COORDINATED_MOTION" geschaltet

® Aktivierung der Funktion ML_KinEnable

® Warten auf die Quittung, dass die Kinematik bereit ist

m Aktivierung der Funktion ML_KinMoveLinAbs mit den Soll-
werten von CoordModeCtrl

= Quittieren des arKinStatus_gb[].Admin._OpModeAck auf
ModeCoordPosLinAbs (Bit MODE_COORD_POS_LIN_ABS)

m Scannen der Werte in CoordModeCtrl.Position[] und erneutes
Aktivieren des ML_KinMoveLinAbs im Fall von Anderungen

Die Fehlercodes der intern benutzten Funktionsbausteine (z.B.
DL_ReadNode zum Lesen von Datalayer Knoten) und der intern
benutzten Funktionen ((z.B. ML_KinEnable) werden durchge-
reicht. Der Funktionsbaustein kann die folgenden Fehlercodes
erzeugen:

Tab. 38: Fehlercodes des Funktionsbausteins MB_Kinematicsinterfacebase

ErroriD

INPUT_RANGE_ERRO
R

DEVICE_ERROR

STATE_MACHINE_ERR
OR

Additional1

Additional2 Beschreibung

16#0A0F0107 16#0C230150 Mindestens einer der
Funktionsbaustein-Ein-
gange ist nicht initial-
isiert

16#0A0F0107 16#0C230151 Kinematik ist im
ErrorStop

16#0A0F0107 16#0C230153 Fehler im Ablauf des

Funktionsbaustein

31.07.2020

55

CXA_MotionInterface.library

Kinematik-Interface

ErrorlD
INPUT_RANGE_ERRO
R

OTHER_ERROR

RESOURCE_ERROR

IINPUT_INVALID_ERR
OR

INPUT_RANGE_ERRO
R

STATE_MACHINE_ERR
OR

STATE_MACHINE_ERR
OR

Additional1

16#0A0F0107

16#0A0F0107

16#0A0F0107

16#0A0F0107

16#0A0F0107

16#0A0F0107

16#0A0F0107

Additional2

16#0C230154

16#0C230155

16#0C230156

16#0C230157

16#0C230158

16#0C230159

16#0C23015A

14.3 Kinematik-Interface - Betriebsarten

Beschreibung

Ungultiger Eingang
AdminCtrl.Config.Group.
GroupNo

Fehler beim Gruppieren
der Kinematik

Mit der Methode
Ctrl.Admin.mTriggerMo-
veCmd() wurde in
ModeCoordUngrouped
eine Betriebsart ange-
wahlt

OpMode wird von dem
Funktionsbaustein in
dieser Variante nicht
unterstuitzt

Globale Achs-Pointer
sind ungliltig

Fehler im Ablauf des
Funktionsbaustein -
Reset

Fehler im Ablauf des
Funktionsbaustein -
Stop

1.4.3.1 Uberblick
Der folgende Abschnitt beschreibt die Betriebsarten, die vom Kine-
matik-Interface Basis Typ unterstiitzt werden und die Attribute, die
zugewiesen werden kénnen.
Es gibt drei Methoden um eine Betriebsart zu aktivieren:
= Auswahl iiber ENUM-Werte
Zuweisen eines Wertes vom TYPE MB_KINEMATICS_MODE
an
arKinCtrl_gb[].Admin._OpMode:
arKinCtrl gb[].Admin. OpMode:= ModeCoordPosLi-
nAbs;
- oder -
arKinCtrl gb[].Admin. OpMode:= ModeCoordAB;
® Benutzung des Bit-Zugriffs
Setzen eines Bits Uber die Bit-Zugriffs Funktionalitat.
arKinCtrl gb[].Admin. OpMode-
Bits.MODE COORD POS LIN ABS:= TRUE;
56 31.07.2020

o

o

CXA_MotionInterface.library
Kinematik-Interface

Léschen des "_OpMode" durch Bit-Zugriffs Funktionalitat ist
auch mdglich.

arKinCtrl gb[].Admin. OpMode-
Bits.MODE COORD POS LIN ABS := FALSE; Durch das
Bit-Léschen wird MODE_COORD_AB aktiviert.

Auch méglich: arkKinCtrl gb[].Admin. OpMode-
BitS.MODE_COORD_AB := TRUE;

® Benutzung der Methode Ctrl. Admin.mTriggerMoveCmd()

Siehe auch "DemoKinematicsCommands" in der Vorlage "ctrlX
CORE Axis/Kin-Interface"

Diese Methode setzt sofort in dem Kontext dieses Aufrufes den
Befehl an die Motion-Firmware ab. Damit dies funktioniert,
muss die Kinematik bereits freigegeben sein, z.B. Mode-
CoordStandby und CmdDone abfragen.

Aufruf: arKinCtrl gb[uiKinIndex].Admin.mTrigger-
MoveCmd (_OpMode:= ModeCoordPosLinAbs,
UserID:="'my text');

- Ubergabeparameter _Opmode = Wert vom TYPE MB_KINE-
MATICS_MODE

- Ubergabeparameter UserlID = String (max. 25 byte). Wird als
"Source" Ubergeben bei Aufruf von Motionkommandos. Bei
Fehlern kann so die Quelle des Befehls identifiziert werden.

- Returnwert der Methode: "cmdID" des abgesetzten Motion-
kommandos. Bei Fehler wird 16#FFFFFFFFFFFFFFFF
zurlickgegeben.

Mit der Methode arKinCtrl_gbjuiKinindex]. Admin.mTriggerMo-
veCmd() ist es moglich mehrere gepufferte Befehle in einem
Zyklus abzusetzen. Im Gegensalz zu Achsen sind bei Kinematiken
alle Befehle gepuffert. Deshalb hat die Methode keinen Ubergabe-
parameter "Buffered".

Bevor eine Betriebsart aktiviert werden kann, missen jedem
Attribut zuerst Werte zugewiesen werden. Alle Attribute haben
Standardwerte. Einige haben Werte ungleich Null, wahrend andere
als 0 definiert sind und aufgrund der speziellen Anforderungen
ihnen ein Wert zugewiesen werden muss.

Nur die Attribute (z. B. Position, Geschwindigkeit), die benutzt
werden oder deren Standardwert gedndert wurde, miissen dekia-
riert werden, bevor der aktuelle Betriebsartenwechsel ausgefiihrt
wird.

31.07.2020

57

CXA_MotionInterface.library

Kinematik-Interface

i

1.4.3.2 Kinematik Bereit

i

Attribute Kinematik Bereit

Die Status-Quittung (arKinStatus gb/[].Admin.) fir eine
Betriebsart ist wie folgt implementiert.

Beispiel:

- Die Status-Quittung gibt nur dann TRUE zurtick, wenn das
Kommando zum Umschalten der Kinematik auf absolutem,
linearem Positionierungsbetrieb ausgefihrt wurde:

arKinStatus gb[].Admin.MODE COORD POS LIN ABS
- Die Status-Quittung wird sofort beim Absetzen eines neuen

Kommandos zurlickgesetzt:

arKinStatus gb[].Admin.CmdDone

Die Positionierungsbetriebsart wird aktiviert:

arKinCtrl gb[].Admin. OpMode.b.MODE COORD POS

LIN ABS

Der Ausgang wird auf TRUE gesetzt, wenn die Kinematik in den

Positionierungsbetrieb schalfet und anféngt sich zu bewegen:

arKinStatus gb[].Admin.MODE COORD POS LIN ABS

Hat die Kinematik die Zielkoordinaten erreicht, wird die Status-

quittung gesetzt:

arKinStatus gb[].Admin.CmdDone

Die Aktivierung dieser Betriebsart schaltet die Kinematik in "Group-
Disabled" und schaltet an allen zugeordneten Achsen das Drehmo-
ment ab. Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl gb[].Admin. OpMode:= ModeCoordAB;

oder

arKinCtrl gb[].Admin. OpModeBits.MODE COORD AB:=
TRUE;

Das Kinematikinterface benutzt infern die Funktion ML_KinDisable
(Bibliothek CXA_Motion) und die Achs-Interface Betriebsart
ModeAb, um die Umschaltung durchzufiihren.

Tab. 39: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinStatus_gb[] Admin._OpModeAck- BOOL entfallt

Bits. MODE_COORD_UNGR

OUPED

58

31.07.2020

1.4.3.3 Kinematik Halt

i

Attribute Kinematik Halt

CXA_MotionInterface.library

Kinematik-Interface

Die Aktivierung dieser Betriebsart schaltet die Kinematik in "Group-
Disabled" und schaltet alle zugeordneten Achsen in AH (Antrieb
Halt) unter Aufrechterhaltung des Drehmoments. Folgendes Kom-
mando aktiviert die Betriebsart:

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl gb[].Admin. OpMode := ModeCoordAH;

oder

arKinCtrl gb[].Admin. OpModeBits.MODE COORD AH :=
TRUE;

Das Kinematikinterface benutzt infern die Funktion ML_KinDisable
(Bibliothek CXA_Motion) und die Achs-Interface Betriebsart
ModeAH, um die Umschalfung durchzufiihren.

Tab. 40: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinStatus_gb[] Admin._OpModeAck- BOOL entfallt

Bits. MODE_COORD_UNGR
OUPED
Admin.CmdDone BOOL entfallt

1.4.3.4 Absolutes lineares Positionieren

Die Aktivierung dieser Betriebsart fiihrt eine absolute lineare Bewe-

gung auf vorher festgelegte Zielkoordinaten aus.

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl gb[].Admin. OpMode := ModeCoordPosLi-
nAbs;

oder

31.07.2020

59

CXA_MotionInterface.library

Kinematik-Interface

i

Attribute Absolutes lineares Positionieren

arKinCtrl gb[].Admin. OpMode-
Bits.MODE COORD POS LIN ABS := TRUE;

Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurlick, wenn die Kinematik die Zielkoordinaten
erreicht hat:

arKinStatus gb[].Admin.CmdDone

Das Kinematikinterface benutzt intern die Achs-Interface
Betriebsart ModeCoordinated und die Funktionen ML_KinEnable
und ML_KinMoveLinAbs (Bibliothek CXA_Motion), um die
Umschaltung durchzufihren.

Tab. 41: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.Point[0..15] LREAL 0.0 Ja

CoordMode.DynValues.Velo- LREAL 10.0 Nein
city

CoordMode.DynValues.Acce- LREAL 10.0 Nein
leration

CoordMode.DynValues.Dece- LREAL 10.0 Nein
leration

CoordMode.DynValues.Jer- LREAL 0.0 Nein
kAcc

CoordMode.DynVa- LREAL 0.0 Nein
lues.JerkDec

arKin- Admin._OpModeAck- BOOL entfallt

Status_gb[] Bits. MODE_COORD_POS_LI

N_ABS
Admin.CmdDone BOOL entfallt

1.4.3.5 Relatives lineares Positionieren

Die Aktivierung dieser Betriebsart fiihrt eine relative lineare Bewe-
gung auf vorher festgelegte Zielkoordinaten durch Addition der
CoordMode.Point[] zu den aktuellen Istkoordinaten aus.

Folgendes Kommando aktiviert die Betriebsart:

60

31.07.2020

Attribute Relatives lineares Positionieren

i

CXA_MotionInterface.library
Kinematik-Interface

arKinCtrl gb[].Admin. OpMode := ModeCoordPos-
LinRel;

oder

arKinCtrl gb[].Admin. OpMode-
Bits.MODE COORD POS LIN REL := TRUE;

Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurlick, wenn die Kinematik die Zielkoordinaten
erreicht hat:

arKinStatus gb[].Admin.CmdDone

Das Kinematikinterface benutzt intern die Achs-Interface
Betriebsart ModeCoordinated und die Funktionen ML_KinEnable
und ML_KinMoveLinRel (Bibliothek CXA_Mofion), um die
Umschaltung durchzufihren.

Tab. 42: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.Point[0..15] LREAL 0.0 Ja

CoordMode.DynValues.Velo- LREAL 10.0 Nein
city

CoordMode.DynValues.Acce- LREAL 10.0 Nein
leration

CoordMode.DynValues.Dece- LREAL 10.0 Nein
leration

CoordMode.DynValues.Jer- LREAL 0.0 Nein
kAcc

CoordMode.DynVa- LREAL 0.0 Nein
lues.JerkDec

arKin- Admin._OpModeAck- BOOL entfallt

Status_gb[] Bits. MODE_COORD_POS_LI

N_REL
Admin.CmdDone BOOL entfallt
31.07.2020 61

CXA_MotionInterface.library
Kinematik-Interface

1.4.3.6 Betriebsart "Standby"

o

Attribute Betriebsart Standby

Wird die Betriebsart von ModeCoordAb oder ModeCoordAH auf
ModeCoordStandby geandert, schaltet das Kinematik-Interface alle
zugeordneten Achsen in AF und gruppiert die Achsen zur Kine-
matik.

Bei Aktivierung dieser Betriebsart in "GroupMoving" werden alle
laufenden Befehle abgebrochen und die Kinematik wird gestoppt
mit dem Zielzustand "GroupStandby".

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl gb[].Admin. OpMode := ModeCoordStandby;

oder

arKinCtrl gb[].Admin. OpMode-
Bits.MODE COORD STANDBY:= TRUE;

Das Kinematikinterface benutzt infern die Achs-Interface
Betriebsart ModeCoordinated und die Funktionen ML_KinEnable
und ML_KinAbort (Bibliothek CXA_Motion), um die Umschaltung
durchzufiihren.

Tab. 43: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis- Admin._OpModeAck- BOOL entfallt

Status_gb[] Bits. MODE_COORD_STAND

BY
Admin.CmdDone BOOL entfallt

1437 Betriebsart "Interrupt”

Bei Aktivierung dieser Betriebsart in "GroupMoving" werden alle
laufenden Befehle unterbrochen und die Kinematik wird gestoppt.
Die Kinematik bleibt aber im Zustand "GroupMoving" bis die Unter-
brechung mit ModeCoordContinue aufgehoben wird.

Wird die Betriebsart von ModeCoordAb oder ModeCoordAH auf
ModeCoordInterrupt geandert, dann schaltet das Kinematik-Inter-
face alle zugeordneten Achsen in AF und gruppiert die Achsen zur
Kinematik.

62

31.07.2020

i

Attribute Betriebsart "Interrupt”

CXA_MotionInterface.library
Kinematik-Interface

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl gb[].Admin. OpMode := ModeCoordInter-
rupt;

oder

arKinCtrl gb[].Admin. OpMode-
Bits.MODE_COORD_INTERRUPT:= TRUE;

Das Kinematikinterface benutzt infern die Funktion ML_Kininter-
rupt (Bibliothek CXA_Motion), um die Umschaltung durchzufihren.

Tab. 44.: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis- Admin._OpModeAck- BOOL entfallt

Status_gb[] Bits. MODE_COORD_INTER-

RUPT
Admin.CmdDone BOOL entfallt

1.4.3.8 Betriebsart "Continue"

Bei Aktivierung dieser Betriebsart wird eine Unterbrechung durch
ModeCoordInterrupt wieder aufgehoben.

Die Anwahl von ModeCoordContinue fiihrt zu einem Fehler, wenn
nicht vorher eine Unterbrechung ausgefihrt wurde.

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl gb[].Admin. OpMode := ModeCoordCon-
tinue;

oder

arKinCtrl gb[].Admin. OpModeBits.MODE COORD CON-
TINUE:= TRUE;

31.07.2020

63

CXA_MotionInterface.library

Kinematik-Interface

@ Das Kinematikinterface benutzt intern die Funktion ML_KinCon-

Attribute Betriebsart "Continue"

tinue (Bibliothek CXA_Motion), um die Umschaltung durchzu-
fiihren.

Tab. 45: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis- Admin._OpModeAck- BOOL entfallt

Status_gb[] Bits.MODE_COORD_CON-

TINUE
Admin.CmdDone BOOL entfallt
1439 Betriebsart "Externer Funktionsbaustein”

o

Wird die Betriebsart von ModeCoordAb oder ModeCoordAH auf
ModeCoordExternalFB geandert, dann schaltet das Kinematik-
Interface alle zugeordneten Achsen in AF, gruppiert die Achsen zur
Kinematik und wartet auf einen externen Bewegungsbefehl, z. B.
von einer Technologiefunktion.

Wenn sich die Kinematik bereits in einer Betriebsart befindet, dann
wird bei der Aktivierung dieser Betriebsart kein Bewegungsbefehl
vom Kinematik-Interface ausgefiihrt.

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl gb[].Admin. OpMode := ModeCoordExter-
nalFB;

oder

arKinCtrl gb[].Admin. OpMode-
Bits .MODE_COORD_EXTERNAL_FB := TRUE;

Das Kinematikinterface benutzt intern die Achs-Interface
Betriebsart ModeCoordinated und die Funktion ML_KinEnable
(Bibliothek CXA_Motion), um die Umschaltung durchzufiihren.

64

31.07.2020

CXA_MotionInterface.library

Kinematik-Interface

Attribute Betriebsart Externer Funktionsbaustein

Tab. 46: Attribute, die von dieser Betriebsart unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKin- Admin._OpModeAck- BOOL entfallt

Status_gb[] Bits. MODE_COORD_EXTER

NAL_FB
1.4.3.10 Betriebsarten tibergreifende Funktionen
Einige Funktionen wirken in allen Positionier Betriebsarten und
werden in diesem Abschnitt beschrieben.
"VelocityOverride" Mit dem Eingang "VelocityOverride" kann eine laufende Bewegung

y |

in der Geschwindigkeit reduziert werden. Erlaubt sind Werte zwi-
schen 0.0% (Kinematik steht) und 100.0% (Bewegung wird mit vor-
gegebener Geschwindigkeit ausgefuhrt).

Das Kinematikinterface benutzt intern die Funktion ML_SetOver-
ride (Bibliothek CXA_Motion), um die Umschalfung durchzufiihren.

Tab. 47: Attribute, die von der Funktion "velocity override” unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.VelocityOverride = LREAL 100.0 ja

"PCS" Mit den Eingangen "PCSSetName" und "ActivatePCS" kann ein

y |

Produktkoordinatensystem (PCS) fur alle Bewegungskommandos
aktiviert werden.

Eine steigende Flanke an "ActivatePCS" aktiviert die in "PCSSet-
Name" als "Set" oder "Group" eingetragenen PCS Offsets und Ori-
entierungen.

Mit einer fallenden Flanke an "ActivatePCS" wird das PCS wieder
deaktiviert.

Das Kinematikinterface benutzt intern die Funktion ML_KinPCSP
(Bibliothek CXA_Motion), um die Umschaltung durchzufihren.

Tab. 48: Attribute, die von der Funktion "PCS" untersttitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt
arKinCtrl_gb[] CoordMode.PCSSetName STRING " nein
arKinCtrl_gb[] CoordMode.ActivatePCS BOOL FALSE ja
31.07.2020 65

CXA_MotionInterface.library
Kinematik-Interface

"PCSTool" Mit den Eingangen "PCSToolSetName" und "ActivatePCSTool"
kann ein Produktkoordinatensystem (PCS) bezogen auf ein Werk-
zeug fur alle Bewegungskommandos aktiviert werden.

Eine steigende Flanke an "ActivatePCSTool" aktiviert die in
PCSToolSetName" als "Set" oder "Group" eingetragenen PCS Off-
sets und Orientierungen.

Mit einer fallenden Flanke an "ActivatePCSTool" wird das PCS
wieder deaktiviert.

@ Das Kinematikinterface benutzt intern die Funktion ML_KinPCS-
1 ToolP (Bibliothek CXA_Motion), um die Umschalfung durchzu-
fihren.

Tab. 49: Attribute, die von der Funktion "PCSTool" unterstiitzt werden.

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.PCSToolSet- STRING " nein

Name
arKinCtrl_gb[] CoordMode.ActivatePCSTool BOOL FALSE ja
"Blending" Mit den Eingangen "BlendingStartD1", "BlendingEndD2" und "Acti-

vateBlending" kann ein Uberschleifen zwischen zwei Bewegungs-
kommandos aktiviert werden. Ein grundlegender Anwendungsfall
ist das Abrunden der Ecke zwischen zwei linearen Bahnen.

Eine steigende Flanke an "ActivateBlending" aktiviert die in "Blen-
dingStartD1" und "BlendingEndD2" eingetragenen Uberschleif-
grenzen.

Mit einer fallenden Flanke an "ActivateBlending" wird das Uber-
schleifen wieder deaktiviert.

@ Das Kinematikinterface benutzt intern die Funktion ML_KinBlendP
1 (Bibliothek CXA_Motion), um die Umschaltung durchzufiihren.

Tab. 50: Attribute, die von der Funktion "Blending” unterstiitzt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.BlendingStartD1 LREAL 0.0 nein

arKinCtrl_gb[] CoordMode.BlendingEndD2 LREAL 0.0 nein
arKinCtrl_gb[] CoordMode.ActivateBlending BOOL FALSE ja

144 Kinematik-Interface - Globale Variablen

Die Bibliothek CXA_MotionInterfaceUser enthalt im Ordner "KinIn-
terfaceUser/GlobalVariables" die globale Variablenliste
"Global_Kinematics_Interface".

66 31.07.2020

CXA_MotionInterface.library

Kinematik-Interface

Diese Liste enthalt die folgenden Strukturen/Variablen:

Tab. 51: VAR_GLOBAL Global_Kinematics_Interface

Name

arKinCtrl_gb[]

arKinStatus_gb[]

arKinldx_gb

uiNofKinematics_gb

VisuKinematicsNo

bClearErrorKin_gb

1.4.5
1.4.5.1

Datentyp Kommentar

ARRAY [] OF TE_KINEMA- Kontrollstruktur des Kinematik-

TICS_CONTROL_TYPEO1 Interface

ARRAY [] OF TE_KINEMA- Statusstruktur des Kinematik-

TICS_STATUS_TYPEO1 Interface

ARRAY [] OF UINT Nicht lickende Liste der Kinema-
tiken

UINT Anzahl der aktiven Kinematiken

INT Umschaltung des Kinematics-

index in den Visualisierungen

BOOL Globales Fehler |l6schen

Kinematik-Interface - Strukturen

Uberblick

o

Das Kinematik-Interface stellt eine Datenschnittstelle zur komfor-
tablen Ansteuerung der Kinematiken zur Verfligung.

Informationen zu den Datenstrukturen siehe Online-Dokumentation
in den Bibliotheken CXA_MotionInterface im Ordner "KinInterface/
DUTs" bzw. in CXA_MotioninterfaceUser im Ordner "KinInterfa-
ceUser/DUTs".

Das Programm-Template "ctriX CORE Axis/Kin-Interface" ist so
vorbereitet, dass es durch den Anwender erweiterbar ist bzw. es
sind einige Erweiterungen schon mit eingebaut. Um diese Erweite-
rungen zu ermadglichen, ist es ndtig, eigene Strukturen im Anwen-
derprojekt zu definieren, die die Strukturen der Bibliothek erwei-
tern. Die erweiterteten Strukturen sind durch den Préfix "TE "
gekennzeichnet. Wenn also imProgramm-Template "ctriX CORE
Axis/Kin-Interface” eine Struktur, z.B. TE_KINEMA-

TICS ADMIN _STATUS heisst, ist diese eine erweiterte Struktur
der MB_KINEMATICS _ADMIN_STATUS.

Informationen zu der Struktur sind in der Online-Dokumentation
unter dem Namen MB_KINEMATICS _ADMIN_STATUS in der Bib-
liothek CXA_Motioninterface und unter dem Namen TE_KINEMA-
TICS _ADMIN_STATUS in der Bibliothek CXA_MotioninterfaceUser
zu finden.

31.07.2020

67

CXA_MotionInterface.library
Kinematik-Interface
1.4.6 Kinematik-Interface - Beispielprogramm

1.4.6.1 Uberblick

In diesem Kapitel soll ein Uberblick tiber die als offener Code ver-
fugbaren Teile des Kinematik-Interface gegeben werden.

Die offenen Programmteile werden mit den folgenden Elementen
geliefert:

®m Das Programmiertemplate "ctrIX CORE Axis/Kin-Interface"
dient als Beispielapplikation flr das Kinematik-Interface. Siehe
auch # Kapitel 1.2 ,Motioninterface - Erstkonfiguration *
auf Seite 2

m Die Bibliothek CXA_MotionInterfaceUser.library kann durch den
Anwender verandert werden um das Kinematik-Interface an die
jeweilige Applikation anzupassen. Siehe auch # Kapitel 1.4.7
~Kinematik-Interface Anwender-Erweiterung “ auf Seite 75.

1.4.6.2 Programmiertemplate "ctriX CORE Axis/Kin-Interface"

Im Programm "DemoKinematicsCommands" wird der Zugriff auf
das Kinematik-Interface gezeigt.

Das Programmiertemplate "ctrIX CORE Axis/Kin-Interface" deckt
die folgenden Punkte zum Kinematik-Interface ab:

® PlcProg:
Aufruf des TE_KinInterfaceMainProg() - Initialisierung und Zykli-
scher Aufruf des Kinematik-Interface.

® MotionProg:
Hier wird die Methode TE_KinInterfaceMainProg.mMotionTask()
aufgerufen. In diesem Takt werden die Istwerte in arKin-
Status_gb[].Data aufgefrischt. Falls die Methode nicht aufge-
rufen wird, werden die Istwerte im Takt des PlcProg aktualisiert.

B GlobalKinematicsDefines:
Wird nur benétigt, wenn MOTIF_CONFIG.CONFIG_MODE auf
GLOB_VAR eingestellt ist.
Hier werden die Kinematiken als Konstanten vom Typ
MB_AXESGROUPIF_REF definiert und in einer Liste an
TE_KinInterfaceMainProg() Gbergeben. Die Konstanten
mussen fir das eigene Projekt entsprechend angepasst
werden.

® DemoKinematicsCommands:

Beispielcode mit einer Ablaufprogrammierung und dem
Absetzen von Kinematikkommandos. Dieser Code muss flr das
eigene Projekt entsprechend angepasst werden.

® OverviewKinematics:

Visualisierung zur Bedienung des Kinematik-Interface wahrend
der Inbetriebnahmephase. Durch Klicken auf Felder mit "<<"
kann in weitere Bilder abgetaucht werden.

® Version_AxisKininterface:
Anderungshistorie und Disclaimer

68 31.07.2020

1.4.6.3 Bibliothek CXA_MotionInterfaceUser.library”

TE_KinInterfaceMainProg

Tab. 52: Schnittstellenvariablen TE_KinlnterfaceMainProg

I/O-Typ
VAR_INPUT

VAR_OUTPU
T

Name

ClearError

KinCfgldx

InitDone

Error

ErrorlD

CXA_MotionInterface.library

Kinematik-Interface

Diese offene Bibliothek dient dazu die Funktionsbausteine und
Strukturen der Basisbibliothek CXA_Motioninterface zu erweitern.
Programme und Visualisierungen werden hier zur Verfigung
gestellt. Hier sind auch die globalen Variablen der Interfaces
instanziiert. Mit dieser Bibliothek sind Anpassungen / Erweite-
rungen der Interfaces durch den Anwender moglich.

Wie man die Anpassungen ausfuhren kann, ist hier # Kapitel 1.4.7
~Kinematik-Interface Anwender-Erweiterung “ auf Seite 75

beschrieben

In diesem Kapitel werden die POUs des Kinematikinterface aus
dem Ordner "KinlnterfaceUser/POUs" beschrieben.

Das Programm TE_KinInterfaceMainProg deckt die folgenden

Punkte ab:

® |nitialisierung des Kinematik-Interface:

Bei Erreichen des Modus "Running" wird das Kinematik-Inter-
face mit Hilfe des Funktionsbausteins TE_KinematicsInitAllKine-
matics initialisiert. Bei erfolgreicher Initialisierung wird der Aus-
gang "InitDone" gesetzt, bei Fehlern der Ausgang "Error".

m Zyklischer Aufruf des Kinematik-Interface:

Nach erfolgreicher Initialisierung wird der Funktionsbaustein
(FB) TE_Kinematicsinterface zyklisch aufgerufen.

® Methode TE_KinInterfaceMainProg.mMotionTask():

Wird die Methode aus einer schnelleren MotionTask aufgerufen,
werden die Elemente in "arKinStatus_gb[].Data" im schnelleren
Takt aktualisiert. Der Aufruf des FB TE_Kinematicsinterface
kann mit Hilfe der Steuer-Variable
"arKinCtrl_gb[].Admin.Config.MotionSync" in die schnellere
Task verschoben werden.

Wird die Methode nicht aufgerufen, erfolgen alle Aktualisie-
rungen im Takt der PLC-Task.

Datentyp

BOOL
POINTER TO
ARRAY [] OF
MB_AXES-
GROUPIF_REF

BOOL

BOOL

ERROR_CODE

Kommentar

Fehler I6schen wird durch eine positive
Flanke an "ClearError" gestartet

Konfigurationsliste fur die Indizes der Kinema-
tiken (nur fur Konfigurationsmodus
"GLOB_VAR")

Wird gesetzt, wenn das Programm die Initiali-
sierung erfolgreich beendet hat

Zeigt an, dass ein Fehler im Programm aufge-
treten ist

Kurzer Hinweis zur Fehlerursache

31.07.2020

69

CXA_MotionInterface.library

Kinematik-Interface
I/O-Typ Name Datentyp Kommentar

Errorldent ERROR_STRUCT Detaillierte Information zum Fehler

Fehlerbehandlung: die Fehlercodes des intern benutzten Funkti-
onsbausteines TE_KinematicsInitAllKinematics werden durchge-
reicht. Das Programm kann die folgenden Fehlercodes erzeugen:

Tab. 53: Fehlercodes des Programmes TE_KininterfaceMainProg

ErroriD Additional1 Additional2 Beschreibung
STATE_MACHINE_ERR 16#0A0F0107 16#0C2301D0 Fehler im Ablauf des
OR Programmes

@ Das Programm TE_KininterfaceMainProg ist zum Integrieren des
1 Kinematik-Interface in ein bestehendes Programm niitzlich.

Siehe auch Example_KinlfApplicationPart im Ordner "Kininterfa-
ceUser/ Examples”

TE_KinematicsInitAllKinematics Der Funktionsbaustein TE_KinematicsInitAllKinematics initialisiert
die Kinematik-Interface Strukturen.

Die Initialisierung kann gesteuert werden mit Hilfe der Parameter-
liste "MOTIF_CONFIG".

Es gibt die folgenden Mdglichkeiten:

B AUTO = MOTIF_CONFIG.CONFIG_MODE: Es wird der Data-
layer Knoten "motion/kin/" ausgelesen und die Kinematiken in
der dort gefundenen Reihenfolge in die Kinematik-Interface
Strukturen eingeordnet.

B GLOB_VAR = MOTIF_CONFIG.CONFIG_MODE: Die Kinema-
tiken werden anhand des globalen Arrays
"KINIF_CONFIG_INDEXES" in die Kinematik-Interface Struk-
turen eingeordnet.

Tab. 54 Schnittstellenvariablen TE_KinematicsinitAllKinematics

I/O-Typ Name Datentyp Kommentar
VAR _INPUT Execute BOOL Die Initialisierung wird durch eine positive
Flanke an "Execute" gestartet
KinCfgldx POINTER TO Konfigurationsliste fiir die Indizes der Kinema-
ARRAY [] OF tiken (nur fur Konfigurationsmodus
MB_AXES- "GLOB_VAR")
GROUPIF_REF
VAR_OUTPU Done BOOL Wird gesetzt, wenn der FB die Bearbeitung
T beendet hat
Active BOOL Wird gesetzt, wenn der FB aktiv ist (nicht im
Leerlaufbetrieb)
Error BOOL Zeigt an, dass ein Fehler im Programm aufge-
treten ist

70 31.07.2020

I/O-Typ Name

ErrorlD

Errorldent

Datentyp
ERROR_CODE

CXA_MotionInterface.library

Kinematik-Interface
Kommentar

Kurzer Hinweis zur Fehlerursache

ERROR_STRUCT Detaillierte Information zum Fehler

Fehlerbehandlung: die Fehlercodes des intern benutzten Funkti-
onsbausteines MB_KinematicslInit werden durchgereicht. Der
Funktionsbaustein kann die folgenden Fehlercodes erzeugen:

Tab. 55: Fehlercodes des Funktionsbausteines TE KinematicsinitAllKinematics

ErroriD

INPUT_RANGE_ERRO
R

INPUT_RANGE_ERRO
R

INPUT_RANGE_ERRO
R

INPUT_RANGE_ERRO
R

INPUT_RANGE_ERRO
R

INPUT_RANGE_ERRO
R

STATE_MACHINE_ERR
OR

Additional1

16#0A0F0107

16#0A0F0107

16#0A0F0107

16#0A0F0107

16#0A0F0107

16#0A0F0107

16#0A0F0107

Additional2

16#0C2301CO0

16#0C2301C1

16#0C2301C2

16#0C2301C3

16#0C2301C4

16#0C2301C5

16#0C2301C8

Beschreibung

Eingang Kinlndex aus-
serhalb des gultigen
Bereiches
[MB_KINIF_MIN_KIN_I
NDEX..MOTIF_CONFIG
.MAX_KIN_INDEX]

Unbekannter Konfigura-
tionsmodus
(MOTIF_CONFIG.CFG_
MODE_KIN)

Pointer KinCfgldx zur
globalen Variablen ist O
(MOTIF_CONFIG.CFG_
MODE_KIN =
GLOB_VAR)

Kinematikindex ausser-
halb des gultigen Berei-
ches
(MOTIF_CONFIG.CFG_
MODE_KIN =
GLOB_VAR)

Kinematikindex doppelt
(MOTIF_CONFIG.CFG_
MODE_KIN =
GLOB_VAR)

Kinematikname doppelt
(MOTIF_CONFIG.CFG_
MODE_KIN =
GLOB_VAR)

Fehler im Ablauf des
Funktionsbausteines

® Das Programm TE_KininterfaceMainProg ruft diesen Funktions-
baustein TE_KinematicsinitAllIKinematics bereits auf.

31.07.2020

71

CXA_MotionInterface.library

Kinematik-Interface

TE_Kinematicsinterface

i

Der Funktionsbaustein TE_Kinematicsinterface erweitert den
MB_KinInterfaceBase und bearbeitet im zyklischen Betrieb die
Kinematik-Interface Strukturen.

Zur Performanceoptimierung sind die Strukturen statt als

VAR IN_OUT als VAR_INPUT mit REFERENCE TO ange-
schlossen. Damit reicht es einmalig die Eingdnge zu initialisieren.
Dies geschieht in der Methode "minitExtension”. Beim zyklischen
Aufruf des Funktionsbausteins miissen damit die Strukturen nicht

tbergeben werden.

Tab. 56. Schnittstellenvariablen TE Kinematicsinterface

I/O-Typ

VAR _INPUT
Steuer-
Struktur

VAR _INPUT
Status-
Struktur

Name

AdminCtrlExt

CoordCtrlExt

SetupMode

AdminStatusExt

DataStatusExt

DiagStatusExt

SetupModeAck

Datentyp

REFERENCE TO
TE_KINEMA-
TICS_ADMINIST-
RATION

REFERENCE TO
TE_KINEMA-
TICS_COORDI-
NATED

REFERENCE TO
TE_KINEMA-
TICS_SETUP_MO
DE

REFERENCE TO
TE_KINEMA-
TICS_ADMIN_STA
TUS

REFERENCE TO
TE_KINEMA-
TICS_DATA

REFERENCE TO
TE_KINEMA-
TICS_DIAGNOSIS

REFERENCE TO
TE_KINEMA-
TICS_SETUP_MO
DE_STATUS

Kommentar

Referenz zur Steuer-Struktur Admin

Referenz zur Steuer-Struktur Coordinated

Referenz zur Steuer-Struktur SetupMode

Referenz zur Status-Struktur Admin

Referenz zur Status-Struktur Data

Referenz zur Status-Struktur Diag

Referenz zur Status-Struktur SetupMode

Fehlerbehandlung: die Fehlercodes der intern benutzten Funkti-
onsbausteine werden durchgereicht. Der Funktionsbaustein kann
die folgenden Fehlercodes erzeugen:

Tab. 57: Fehlercodes des Funktionsbausteines TE Kinematicsinterface

ErroriD

STATE_MACHINE_ERR

OR

Additional1

16#0A0F0107

Additional2 Beschreibung

16#0C2301E0 Fehler im Ablauf des

Funktionsbausteines

72

31.07.2020

CXA_MotionInterface.library

Kinematik-Interface

@ Das Programm TE_KininterfaceMainProg ruft diesen Funktions-

baustein TE_Kinematicsinterface bereits auf.

14.6.4 Kinematik-Interface Visualisierungen

1.4.6.4.1 Uberblick

Beispielprojekt Visualisierungen

Tab. 58: Beispielprojekt Visualisierungen

Visualisierung

OverviewKinematics (im Tem-
plate-Project)

Kinematics_Overview

KinPosition_mode

KinSetup_mode

Zum Kinematik-Interface werden Visualisierungsmasken mitgelie-
fert, um ein vorgefertigtes und einfaches Interface zum Einstellen
und Ansteuern der Kinematiken zur Verfigung zu stellen.

Folgende Visualisierungen sind Programmiertemplate "ctrIX CORE
Axis/Kin-Interface" und in der Bibliothek CXA_Motioninterfa-
ceUser.library enthalten:

Beschreibung

Gesamtiiberblick tber alle definiertenKinematiken, einschlieRlich einfa-
cher Diagnosen und Statusinformationen

Zeigt aktuelles Kommando und aktuelle Werte fiir Koordinaten und
Geschwindigkeit, zusammen mit Navigation zur Positions- und Setup-
Anzeige flr die aktuelle Kinematik. Abschalten der Achsen ist ebenfalls
maoglich

Uberwachen des Positionierbetriebs

Uberwachen des Tippbetriebs

Die folgenden globalen Variablen werden zum Steuern und fur den
Zugriff auf Systeminformationen innerhalb der Visualisierungen
benutzt:

m arKinCtrl_gb[]
®m arKinStatus_gb[]
® VisuKinematicsNo

1.4.6.4.2 Systemiibersicht-Visualisierung

Die OverviewKinematics Visualisierung erlaubt es dem Anwender
jede, im Projekt konfigurierte Kinematik, schnell anzukoppeln.
Zusatzliche Kinematiken kénnen im Offline-Betrieb zur Anzeige
hinzugefugt werden.

Diese Anzeige liefert einen Gesamt-Systemstatus und ermdglicht
das Ldschen von Fehlern. Einzelne Kinematik-Bedienelemente lie-
fern den Kinematiknamen, Diagnosen, aktuelle Koordinaten und
Geschwindigkeit zusammen mit den Betriebsarten-Statusanzeigen.

31.07.2020

73

CXA_MotionInterface.library

Kinematik-Interface

Hinzufiigen einer Kinematik zur Sys-

temibersicht

Systemiibersicht Navigation

o

& OverviewKinematics X

ClearEror | [RUN | | overviewKinematics |
Error O
[Diagnesis Number MainDetail | [| Motion
Overview <<
| Diagnosis Text |
Kinematics Details / Diagnosis Status Original Coordinates
==| Ki ics: 0 [etivel z Status: BaseCoordinate 0: 42.00
Kin1 ErrorTable: ModeCoordPosLinAbs [BaseCoordinate 1: 14200
ErrorAdd: Velogity: 0.00 BaseCoordinaie 2. 24200
ErrorAdd?: Acceleration: 0.00 BaseCoordinate 3: 0.00
Diagnosis Main/Detail PLC open state BaseCoordinate 4: 0.00
reading notactivated STANDBY BaseCoordinate 5:_0.00
<<| Ki ics: 1 [ctive) 5 Status: BaseCoordinate 0: 16.57
Mover ErrorTable: ModeCoordPoslinRel |BaseCoordinate 1: 6143
Error | ErrorAddl: Velocity 10.00 BaseCnnrdinaie 2- 10629
ErrorAdd?- Accelemfion: 0.00 BaseCoordinate 3: 0.00
Diagnosis Main/Detail- PLC open stale BaseCoordinate 4: 0.00
reading not activated MOVING BaseCoordinate 5: 0.00

Abb. 14: OverviewKinematics

Das Hinzufugen einer Kinematik zur Systemubersicht-Anzeige
erfolgt wie das Hinzuflgen einer neuen Visualisierung, durch
Anwahlen des entsprechenden Elements und Festlegung der Kine-
matiknummer. Nachfolgend aufgefuhrte Schritte stellen die Vorge-
hensweise kurz dar:

1.) Mit ctrlX PLC Engineering im Offline-Betrieb Doppelklick auf
die "OverviewAllKinematics" Visualisierung.

2.) Wahlen Sie im Fenster Visualisierungswerkzeuge die Schalt-
flache ,Frame“an und erzeugen Sie einen Grundriss unter-
halb der letzten Kinematiktabellenzeile, der der Zeilenhohe
und Zeilenbreite entspricht.

3.) Mit rechter Maustaste auf den Frame klicken und "Frameaus-
wahl" aktivieren. Wahlen Sie das OverviewOneKinematics-
Element aus dem Visualisierungsauswabhlfenster im Ordner
CXA_MotioninterfaceUser/KinInterfaceUser/Visualizations/
SystemOverviewaus.

=» Eine komplett neue Systemubersicht Kinematikzeile
erscheint.

4.) Nach einem Klick in der neuen Visualisierung tragen Sie im
"Eigenschaften"-Fenster als Wert fir m_Input_KinIndex den
Index der definierten Kinematik ein.

5.) Das neue Kinematik-Interface fur die Systemibersicht kann
nun in der Grésse angepasst und positioniert werden.

6.) Ubersetzen Sie das SPS-Projekt neu und gehen Sie Online.

Obige Schritte missen fiir alle, zusétzlich zum Projekt hinzuge-
figten Kinematiken wiederholt werden.

Eine Einzelkinematik-Ubersichtanzeige ist durch Klicken auf die
Schaltflache mit zwei Pfeilen "<<", die sich unter der Details-Spalte
in der Kinematiktabelle befindet, erreichbar. Aus der Kinematik-
Ubersichtanzeige ist die Navigation zur Positions- und Setup-
Betriebsartenanzeige mdglich.

74

31.07.2020

CXA_MotionInterface.library

Kinematik-Interface

(o T - T |

O] o] MCEE]

) I__EI (1
o]

@] Dverviewdinematics
-
ClearEme | [RUN| | OverviewKinematics |
Error O ? .:
i Mumber Main/Detesl . ' Mation
ng_.rlusl:_u | - cnishs
Diagnosis Text] i a I
Kinematica Detaila § Diagnosis _: i_ilaI- Original Coordinates
t <<l Kinematice:0 Bebus||Ermean: . Status: BaseCoordinate 0. 4200
inl |ErveTabi: H ModeCoordPoslinAbs |[BaseCoordinate 1: 14200
e EsrarAddt: H Velocity: 0.00 BaseCoordinate 2 24200
ErrorAdd: - Accelembon: . 0.00 BaseCoordinate 3. 0.00
Diagnosis MainDetad: > stale BaseCoordinate 4. 0,00
reading not = STANDEY = "
|| Kinematics:1 [BSHRE| Emerin: . Slatus, BaseCoordinats 01657
Mowver E T bl M Ihcl-l:wrdﬁpl.nﬂnl BaseCoordinate 1 61
| . I ErrorAddi: 5 Ve - aseCoord =
ErvorAdd> = lie= ration aseCoordin 3 0
Diagnosis MainDetad: k open stats BaseCoordinate 4: 0.00
reading not acivaled " G S - z
Emfratme wwsie e (5 Fiokmslirserars | 5 _: z 1) revew [from CXA_Hotonistedsortser] %
\—\ e : B Kinamalics Ovarview |
o DaSriup medes [COAHotadstedaoriioer] K - -
- Kii icrigme |+ Kin1 | KinHr| KINEMATICE D |
— % Ener () EmeeiD | WONE_ERFDR | _Clearem |
Kmamalic nsme winl 1k 3 ”
e g o} [Comaes—}——
-~ . Base Coordinates
Dryramic Limits +* 'p &R W
viocny T N . S e
Actaber & i e Popton . AH
= 0 | Lo | L
Sorichee: 7 JokDec 000 .
: . L L remd| | Eom O E o E
Droctoniiactor _sghessrbies | dogiecerbions | . W] (W00)15 000
W e) Rusgoncpiions] 5 “Senthd] | | ey
(4 o [o O |]
ccgap | L Accederstion [000]
5 Jork [T]
] sinlus

Actual cmd [
Lt emd [

5

slulzls]elelsln)els]

hriaa
e e r e e p———
15 s 3ol e s

I L

;
3
;
|
!
;
A
L [B commandoone
:
-I.
!
.
.

Abb. 15: Systemiibersicht Navigation

1.4.7
1.4.7.1

o

Kinematik-Interface Anwender-Erweiterung

Uberblick
Die arKinCtrl_gb[] und arKinStatus_gb[] Strukturen kénnen durch
den Anwender erweitert werden, um das Kinematik-Interface an

spezielle Applikationen anzupassen.

Die arKinCtrl_gbf J- und arKinStatus_gb/ J-Strukturen des
Anwender-Interface sind als Basistypen mit dem Préafix "MB_
der geschlossenen Bibliothek CXA_Motioninterface.compiled-lib-

rary definiert und daher fiir den Anwender nicht zugénglich
Um Erweiterungen zu ermdglichen, ist es notig, eigene Strukturen
zu definieren, die die Strukturen "MB_" erweitern. Die erweiterteten

ini ,
Strukturen sind durch den Préfix "TE_" gekennzeichnet und
befinden sich in der offenen Bibliothek CXA_Motioninterfa-

ceUser.library.
75

31.07.2020

CXA_MotionInterface.library
Kinematik-Interface

Empfohlene Vorgehensweise

Arbeitsablauf

o

ML_GetOverride

Um die Anwendererweiterungen auszufiihren, ist es notwendig die
Bibliothek CXA_MotioninterfaceUser.library anzupassen. Zur
Nachvollziehbarkeit ist es notwendig und dringend empfohlen der
angepassten Bibliothek einen neuen Namen zu geben, z.B.
CXA_MotionlnterfaceMyCompany.library. Im Folgenden wird als
Bibliotheksname CXA_MotionIinterfaceMyCompany.library ver-
wendet.

1.), Im Bibliotheksverwalter die CXA_MotioninterfaceUser.library
selektieren. Rechte Maustaste -> "Bibliothek exportieren"
anwabhlen. Speicherort wahlen und einen neuen Namen z.B.
CXA_MotionInterfaceMyCompany.library vergeben. Nacht-
ragliches Umbenennen ist ebenfalls moglich.

2.) Mit einer zweiten Instanz von ctrlX PLC Engineering die Bibli-
othek CXA_MotioninterfaceMyCompany.library 6ffnen. In den
Projektinformationen das Feld "freigegeben" abwahlen, die
weiteren Felder anpassen und in den Eigenschaften den
Schlussel "Placeholder" Idschen.

3.) Im Anwendungsprogramm (erste Instanz von ctrIX PLC Engi-
neering) im Bibliotheksverwalter die CXA_MotionInterfa-
ceUser.library entfernen und dafiir CXA_MotioninterfaceMy-
Company.library einbinden.

4.) Anpassungen in der Bibliothek vornehmen. Am Ende aus-
fuhren: "Datei"->"Projekt speichern und ins Bibiliotheksrepo-
sitory installieren".

5.) Im Anwendungsprogramm (erste Instanz von ctrIX PLC Engi-
neering) die Anpassungen testen. Debuggen im Code aus
der Bibliothek ist auch mdglich.

6.) Schritte 4. und 5. wiederholen bis die Funktion fehlerfrei ist.

Sobald ein Update der CXA_MotioninterfaceUser.library zur Verfi-
gung steht, kénnen Anderungen mit "Projekt"->"Vergleichen" in die
CXA_MotioninterfaceMyCompany.library libernommen werden.

Die CXA_MotioninterfaceUser.library verwendet Fehlercodes mit
"CXA_TABLE". Diese sind in der Produktdokumentation zu finden.
Wenn in den Anwendererweiterungen weitere Fehlercodes beno-
tigt werden, kbnnen diese frei definiert werden, mdssen aber mit
"USER1_TABLE..USER10_TABLE" gemeldet werden.

Dieser Abschnitt zeigt, wie das Kinematik-Interface durch Hinzu-
figen der ML_GetOverride-Funktionalitat erweitert wird. Die Funk-
tion ML_GetOverride ermdglicht es, den aktuellen VelocityOverride
einer Kinematik abzufragen. Der Sollwert ist bereits in der Basis-
Struktur als "arKinCtrl_gb[].CoordMode.VelocityOverride" vor-
handen.

Die folgenden neuen Ein- und Ausgange werden definiert:

® arKinCtrl_gb[].Admin.EnableReadVelocityOverride
® arKinStatus_gb[].Data.ActVelocityOverride

76

31.07.2020

Hinweise zur Implementation von
Anwendererweiterungen

CXA_MotionInterface.library

Kinematik-Interface

Im Programm-Template "ctrIX CORE Axis/Kin-Interface" sind fol-
gende anwenderspezifische Erweiterungen implementiert:

® Jog-Funktionalitat als "SetupMode"

Im Folgenden wird davon ausgegangen, dass die im Programm-
Template "ctrlX CORE Axis/Kin-Interface" bereits vorbereitete
Struktur verwendet wird. Es wird nur beschrieben, welche Ande-
rungen in den dort vorgegebenen POUs notwendig sind.

Die Anwendererweiterungen werden mit Hilfe der objektorientierten
Erweiterungen von ctriX PLC Engineering implementiert. Dabei
sind einige Besonderheiten zu beachten:

® Der Funktionsbaustein (FB) TE_KinematicsInterface ist vom
Basis-FB MB_KinematicsinterfaceBase abgeleitet. Uber das
Schlusselwort "SUPER" kann der Basis-FB bzw. Methoden/
Aktionen des Basis-FB aufgerufen werden. Zum Beispiel wird
an diversen Stellen Uber SUPER”.mSetError(...); die Methode
mSetError des FB MB_KinematicsInterfaceBase aufgerufen um
Fehler in das Diagnosesystem einzutragen

® Innerhalb des FB TE_KinematicsInterfaceBase kann auf die
Daten von arKinCtrl_gb Gber die Eingange AdminCtrlExt,
CoordCtrlExt usw. bzw. auf arKinStatus_gb tGber AdminStatu-
sExt, DiagStatusExt usw. zugegriffen werden.

Die Eingdnge AdminCtrl (ohne Ext) usw. gehéren zum Basis-FB
und sollten nicht genutzt werden

® Die Eingange des FB TE_KinematicsinterfaceBase sind als
"REFERENCE TO" definiert. In der Methode mInitExtension
werden die Referenzen einmalig initialisiert und miissen dann
beim zyklischen Aufruf des FB nicht mehr ibergeben werden

B Wenn die Basisstrukturen TE_KINEMATICS_CON-
TROL_TYPEO1 und TE_KINEMATICS_STATUS _TYPEO1 mit
zusatzlichen Unterstrukturen erweitert werden sollen, sind fol-
gende zusatzliche Schritte zu der weiter unten beschriebenen
Vorgehensweise notwendig (siehe SetupMode und SetupMo-
deAck als Beispiele):

- Neue Elemente in TE_KINEMATICS_CONTROL_TYPEO1
bzw. TE_KINEMATICS_STATUS_TYPEO1 eintragen

- Am FB TE_KinematicsInterfaceBase die zusatzlichen Ein-
gange als REFERENCE TO hinzufiigen

- In der Methode minitExtension des FB TE_Kinematicsinter-
faceBase die Referenzen initialisieren

14.7.2 Erweitern der arKinCtrl_gb][]J-Struktur

Um die zusatzliche Funktionalitat der arKinCtrl_gb[] Struktur hinzu-
zufiigen, muss der Anwender eine neue Struktur anlegen, die
Unterstrukturen von den bereits existierenden Struktur ableiten und
dann die neuen Elemente hinzufiigen. Im Programm-Template
"ctrIX CORE Axis/Kin-Interface" ist eine Struktur TE_KINEMA-
TICS_CONTROL_TYPEO1 und die Unterstrukturen TE_KINEMA-
TICS_ADMINISTRATION usw. bereits vorbereitet.

31.07.2020

77

CXA_MotionInterface.library

Kinematik-Interface

14.7.3

1474

Nehmen Sie die folgenden Schritte vor, um die Funktionalitat der
TE_KINEMATICS_ADMINISTRATION Struktur zu erweitern:

1.) Mit ctriX PLC Engineering die Bibliothek CXA_MotionlInterfa-

ceMyCompany.library 6ffnen

2. , Offnen Sie die Struktur TE_KINEMATICS_ADMINISTRA-

TION, Ordner KinlnterfaceUser/DUTs/Control.

3.) Deklarieren Sie die folgende Variable

B EnableReadVelocityOverride: BOOL:=TRUE;

Erweitern der arKinStatus_gb[] Struktur

Erweitern Sie die arKinStatus_gb][]-Struktur entsprechend den
Schritten in "Erweitern der arKinCtrl_gb[] Struktur". Die folgenden
Schritte stellen die Vorgehensweise kurz dar:

1.) Offnen Sie die Struktur TE_KINEMATICS_DATA, Ordner

KinInterfaceUser/DUTs/Status.

2.) Deklarieren Sie die folgende Variable

B ActVelocityOverride: LREAL;

Erweitern des Funktionsbausteines

Der letzte Schritt im Ablauf der Anwender-Erweiterung ist, den
Funktionsbaustein so zu erweitern, dass die neuen Elemente
benutzt werden konnen.

1.) Deklarieren Sie im FB TE_KinematicsInterface die folgende

Variable:
StML GetOverrideData: ML GetOverrideData;

Im FB TE_Kinematicsinterface kdnnte die Funktion so aus-
programmiert werden:

IF AdminCtrlExt.EnableReadVelocityOverride =
TRUE THEN

StML GetOverrideData.In.ObjName := AdminCtr-
lExt.Config.Group.KinName;

ML GetOverride (stML GetOverrideData); // call
motion function

DataStatusExt.ActVelocityOverride :=
StML GetOverrideData.Out.Value;

END IF

Ubersetzen Sie das Projekt neu und (iberpriifen Sie es auf
Programmierfehler.

4.) Laden Sie das Projekt in die Steuerung.

78

31.07.2020

CXA_MotionInterface.library

Kinematik-Interface

Die neuen Eingangs- und Ausgangs-Elemente sind nun ein Teil der
Kinematik-Interface-Struktur und kénnen uber die Variablen in
Global_Kinematics_Interface betrachtet werden.

Watch 1
Expression Type Value
= ﬂ Global_Kinematics_Interface.arkinCtrl_gb[0] TE_KIMEMATICS _COMTROL_TYPEO1
= ¢ Admin TE_KIMEMATICS _ADMIMISTRATION
+ & Config ME_KIMEMATICS _ADMIM_COMFIG
% ClearError BOOL FALSE
4% RetriggerOpMode BOCL FALSE
@ _OpMode ME_KIMEMATICS_MODE ModeCoord®B

+ %% OpModeBis

TE_KINEMATICS_MODE_BITS

BOOL

TRUE

S

Coordrode
+ & SetupMode
= ﬂ Global_Kinematics_Interface.arkinStatus_agb(l]

L 4% EnableReadVelodtyOverride
I

TE FINEMATICS COORDINATED
TE_KINEMATICS_SETUP
TE_KINEMATICS_STATUS_TYPED1

+ & Admin TE_KIMEMATICS_ADMIM_STATLS
+ ¢ Diag TE_KIMEMATICS _DIAGMOSIS
= @ Data TE_KIMEMATICS_DATA
Acceleration LREAL 0
Disabled BOCL
@ ErrorStop BOOL FALSE
@ lerk LREAL 0
Maving BOCL FALSE
@ FPLCopenState STRING(S0) DISABLED
+ ¢ PositionBaseCoord REFEREMCE TO ARRAY [0..(MB_KIMI..
Standby BOCL FALSE
@ Stopping BOOL FaLSE
d Velocity LREAL i
[4y ActvelocityOverride LREAL 0.5]

+ @ SetupMode

TE_FKINEMATICS SETUP_STATUS

Abb. 16. arKinCitrl_gb und arKinStatus _gb Strukturen mit Anwender-Erweiterungen

1.4.8

1.4.81 Zugriff auf Kinematikdaten

HowTo: Typische Anwenderaktivitaten

Die folgenden Daten sind verfligbar (Name = jeweiliger Kinematik-

name):

® arKinCtrl_gb[Name.GroupNo] => Steuerstruktur des Kinematik-

Interface

® arKinStatus_gb[Name.GroupNo] => Statusstruktur des Kine-
matik-Interface

® arKinStatus_gb[Name.GroupNo].Data => Istwerte und Statusin-
formationen

31.07.2020

79

CXA_MotionInterface.library

Kinematik-Interface

Azyklische Zugriffe auf Kinematikdaten sind tber den ctriX Data-
Layer mit den Funktionsbausteinen DL_ReadNode und DL_Write-
Node mdglich.

1.4.8.2 Anpassung der maximalen Kinematikanzahl

Die Kinematikstrukturen konnen an die tatsachlich vorhandene
Kinematikanzahl angepasst werden.

Die Bibliothek CXA_MotioninterfaceUser erlaubt Anpassungen
Uber die Bibliotheksparameter "MOTIF_CONFIG".

Mit der Konstanten "MAX_KIN_INDEX" kann die Grésse der Struk-
turen passend zur Anwendung gewahlt werden.

@ Beim Kinematik-Interface ist die untere Array-Grenze fest auf die
Konstante "MB_KINIF_MIN_KIN_INDEX" mit dem Wert Null fest-
gelegt.

14.8.3 Anpassung der Zuordnung Kinematikname<>Kinematikindex

Das Kinematikinterface arbeitet mit einem Kinematikindex zur
Adressierung in den Kinematikstrukturen. Die Motion-Firmware
arbeitet mit dem Kinematiknamen. Die Zuordnung Kinematik-
name<>Kinematiklndex kann mit verschiedenen Methoden
erfolgen.

Die Bibliothek CXA_MotioninterfaceUser erlaubt eine Auswahl der
Methode Uber die Bibliotheksparameter "MOTIF_CONFIG".

Zuordnung Kinematikname<>Kinematikindex in
MOTIF_CONFIG.CFG_MODE_KIN

B AUTO: Auslesen des DatalLayer Knotens "motion/kin" und
Zuweisung des Kinematikindex in der hier vorgefundenen Rei-
henfolge

B GLOB_VAR: in der Application wird eine Liste von "MB_AXES-
GROUPIF_REF" definiert und an das Programm "TE_KinlInter-
faceMainProg" Gibergeben. Siehe "GlobalKinematicsDefines" im
Programm-Template "ctrlX CORE Axis/Kin-Interface".

1484 Kinematik hinzufiigen

Eine Kinematik kann in der Bedienoberflache im Bereich Motion
angelegt werden oder auch z.B. aus dem SPS-Programm erzeugt
werden.

Fir eine hinzugefugte Kinematik muss ggf. eine Initialisierung
bestimmter Strukturelemente des Kinematik-Interface vorge-
nommen werden. Dies geschieht bei Verwendung des Programm-
Template "ctrIX CORE Axis/Kin-Interface" automatisch beim Errei-
chen des Zustandes "Running". Die Zuordnung
Kinematikname<>Kinematikindex muss erganzt werden, wenn
MOTIF_CONFIG.CFG_MODE_KIN = GLOB_VAR konfiguriert ist.
Siehe auch oben # weitere Informationen auf Seite 80.

80 31.07.2020

1.4.8.5

1.4.8.6

CXA_MotionInterface.library

Kinematik-Interface

Kinematik entfernen/umbenennen

Eine vorhandene Kinematik kann in der Bedienoberflache im
Bereich Motion oder Uber diverse Schnittstellen geldscht bzw.
umbenannt werden.

Wird eine Kinematik umbenannt, muss der Zugriff Gber die Control-
u. Statusstrukturen "arKinCtrl_gb[geanderterKinematik-
name.GroupNo]" und "arKinStatus_gb[geanderterKinematik-
name.GroupNo]" innerhalb des SPS-Programmes angepasst
werden.

Die Zuordnung Kinematikname<>Kinematikindex muss angepasst
werden, wenn MOTIF_CONFIG.CFG_MODE_KIN = GLOB_VAR
konfiguriert ist. Siehe auch oben # weijtere Informationen

auf Seite 80.

Kinematik-Interface Erweiterungen

Das Kinematik-Interface erlaubt fast beliebige Erweiterungen der
Kinematik-Interface-Strukturen. Es kdnnen zusatzliche Unterstruk-
turen eingefugt und auch die vorhandenen Unterstrukturen erwei-
tert werden.

Die folgenden Strukturelemente sind als Anwendererweiterungen
in der KinCtrl-Struktur beispielhaft programmiert:
B SetupMode: zusatzliche Unterstruktur in der KinCtrl-Struktur
- Enable: Freigabe Einrichtbetrieb
- JogMode: Einstellung inkrementell oder kontinuierlich tippen
- JogPlus|]: Tippen +, flr jede Koordinate einzeln wahlbar
- JogMinus[]: Tippen -, fir jede Koordinate einzeln wahlbar
- Increment: Schrittweite bei inkrementellem Tippen

- DirectionVector[]: Bewegungsrichtung beim Vertippen auf
der Bahn

- JogVectorPlus: Tippen +, fir die gesamte Kinematik
- JogVectorMinus: Tippen -, flr die gesamte Kinematik
- DynValues: Tipp(brems)beschleunigung und Ruck.

Die folgenden Strukturelemente sind als Anwendererweiterungen
in der KinStatus-Struktur beispielhaft programmiert:

B SetupMode: zusatzliche Unterstruktur in der KinStatus-Struktur
- EnableAck: Einrichtbetrieb ist aktiv

Der Code zu diesen Erweiterungen ist in den Aktionen des Baust-
eins TE_Kinematicsinterface() im Ordner "KinInterfaceUser/POUS"
zu finden. Die dazugehdrigen Strukturen sind in den Ordnern
"KinInterfaceUser/DUTs/Control" und "KinInterfaceUser/DUTs/
Status" zu finden.

31.07.2020

81

CXA_MotionInterface.library
IMC-Interface

Es kdnnen eigene Erweiterungen hinzugefiigt werden (siehe dazu
~ , Seite).

1.5 IMC-Interface
1.5.1 Einfihrung und Ubersicht

Das IMC-Interface (Interface-Motion-Control) enthalt in der Kon-
trollstruktur Steuersignale fir die App rexroth-motion und in der
Statusstruktur werden Statusbits und Diagnoseinformationen der
App rexroth-motion zur Verfligung gestellt.

Funktionen des IMC-Interfaces

B Anwahl des Modus "Configuration" oder "Running"
® fuhrt den Befehl "Clear Error" fir die App rexroth-motion aus

fuhrt "RetriggerOpMode" aus, um es den Benutzern zu ermogli-
chen, den gewahlten Betriebsmodus erneut auszufiihren

® Bei einer Modusumschaltung Uber eine externe Instanz (z.B.
Web-Interface) setzt das Imc-Interface den Ausgang "Passiv-
eMode" und der angewahlte Modus wird nicht angesteuert.

Mit "RetriggerOpMode" oder durch Zuriickschalten in den ange-
wahlten Modus wird der "PassiveMode" wieder verlassen

Die folgende Abbildung zeigt das Benutzerinterface mit den Daten-
strukturen des IMC-Interface:

Watch 1
Expression Type Value Prepared value
= Global_ImcInterface GLOBAL _IMCINTERFACE
= @ Imectrl MB_IMC_CONTROL_TYPEO1
= & Admin MEB_IMC_ADMINISTRATION
@ _OpMade MB_IMC_MODE_CONTROL IMC_MODE_CTRL_CONF IMC_MODE_CTRL_RUN
@ RetriggerOpMade BOOL
& ClearError BOOL
= @ Imcstatus MB_IMC_STATUS_TYPEOL
@ InOperation BOOL TRUE
= @ Admin ME_IMC_ADMIN_STATUS
_OpModefd: MB_IMC_MODE_STATUS

@ ModeStatus_Boot BOOL
@ ModeStatus_Config BOOL
@ ModeStatus_Error BOOL
@ ModeStatus_Run BOOL

= @ Diag MB_IMC_DIAGNOSIS
@ Eror BOOL
@ ErrorID ERROR_CODE ACCESS_ERROR
= & FErrorldent ERROR_STRUCT
@ Table ERROR_TABLE CXA_TABLE
@ Additionall DWORD 1680000001
% Additional2 DWORD 1600000000
& ClearErrorAck BOOL
NumberMain DWORD 16%090F2040
#@ NumberDetail DWORD 16200560272
@ Message STRING ‘vel: 10.000"
@ ObjectName STRING MowverX'
@ PassiveMode BOOL

Abb. 17: Datenstrukturen IMC-Interface

Weitere Informationen zu den Datenstrukturen siehe Online-Doku-
mentation in der Bibliothek CXA_Motioninterface im Ordner "Imclin-
terface/DUTs".

82 31.07.2020

o

CXA_MotionInterface.library
IMC-Interface

Um das Imc-Interface benutzen zu kdnnen, muss nur das Pro-
gramm "MB_Imclinterface" zyklisch aufgerufen werden, z.B. in der
PlcTask. Bei der Verwendung des Achs- bzw Kinematik-Interface
ist der Programmaufruf bereits integriert.

In der Bibliothek CXA_Motioninterface ist im Ordner "Imcinterface/

_Examples" ein Anwendungsbeispiel zum Imc-Interface enthalten.

Dieses Beispiel zelgt, wie ImcStatus und ImcCtrl beim Erstellen
von Achsen verwendet werden kénnen.

31.07.2020

83

	‎1 CXA_MotionInterface.library‎
	‎1.1 Einführung und Übersicht‎
	‎1.2 MotionInterface - Erstkonfiguration‎
	‎1.3 Achs-Interface‎
	‎1.3.1 Einführung und Übersicht‎
	‎1.3.2 Achs-Interface - Funktionsbausteine‎
	‎1.3.2.1 MB_AxisInit‎
	‎1.3.2.2 MB_AxisInterfaceBase‎

	‎1.3.3 Achs-Interface - Betriebsarten‎
	‎1.3.3.1 Überblick‎
	‎1.3.3.2 Antrieb Bereit‎
	‎1.3.3.3 Antrieb Halt‎
	‎1.3.3.4 Absolutes Positionieren‎
	‎1.3.3.5 Relatives Positionieren‎
	‎1.3.3.6 Additives Positionieren‎
	‎1.3.3.7 Betriebsart "Robot-Control"‎
	‎1.3.3.8 Betriebsart "Gantry"‎
	‎1.3.3.9 Betriebsart "Externer Funktionsbaustein"‎
	‎1.3.3.10 Benutzerdefinierte Betriebsarten‎

	‎1.3.4 Achs-Interface - Globale Variablen‎
	‎1.3.5 Achs-Interface - Strukturen‎
	‎1.3.5.1 Überblick‎

	‎1.3.6 Achs-Interface - Beispielprogramm‎
	‎1.3.6.1 Überblick‎
	‎1.3.6.2 Programmiertemplate "ctrlX CORE Axis/Kin-Interface"‎
	‎1.3.6.3 Bibliothek CXA_MotionInterfaceUser.library"‎
	‎1.3.6.4 Achs-Interface Visualisierungen‎
	‎1.3.6.4.1 Überblick‎
	‎1.3.6.4.2 Systemübersicht-Visualisierung‎

	‎1.3.7 Achs-Interface Anwender-Erweiterung‎
	‎1.3.7.1 Überblick‎
	‎1.3.7.2 Erweitern der arAxisCtrl_gb[]-Struktur‎
	‎1.3.7.3 Erweitern der arAxisStatus_gb[] Struktur‎
	‎1.3.7.4 Erweitern des Funktionsbausteines‎
	‎1.3.7.5 Anwendung der benutzerdefinierten Betriebsarten‎

	‎1.3.8 HowTo: Typische Anwenderaktivitäten‎
	‎1.3.8.1 Zugriff auf Achsdaten‎
	‎1.3.8.2 Anpassung der maximalen Achsanzahl‎
	‎1.3.8.3 Anpassung der Zuordnung Achsname<>AchsIndex‎
	‎1.3.8.4 Achse hinzufügen‎
	‎1.3.8.5 Achse entfernen/umbenennen‎
	‎1.3.8.6 Achs-Interface Erweiterungen‎

	‎1.4 Kinematik-Interface‎
	‎1.4.1 Einführung und Übersicht‎
	‎1.4.2 Kinematik-Interface - Funktionsbausteine‎
	‎1.4.2.1 MB_KinematicsInit‎
	‎1.4.2.2 MB_KinematicsInterfaceBase‎

	‎1.4.3 Kinematik-Interface - Betriebsarten‎
	‎1.4.3.1 Überblick‎
	‎1.4.3.2 Kinematik Bereit‎
	‎1.4.3.3 Kinematik Halt‎
	‎1.4.3.4 Absolutes lineares Positionieren‎
	‎1.4.3.5 Relatives lineares Positionieren‎
	‎1.4.3.6 Betriebsart "Standby"‎
	‎1.4.3.7 Betriebsart "Interrupt"‎
	‎1.4.3.8 Betriebsart "Continue"‎
	‎1.4.3.9 Betriebsart "Externer Funktionsbaustein"‎
	‎1.4.3.10 Betriebsarten übergreifende Funktionen‎

	‎1.4.4 Kinematik-Interface - Globale Variablen‎
	‎1.4.5 Kinematik-Interface - Strukturen‎
	‎1.4.5.1 Überblick‎

	‎1.4.6 Kinematik-Interface - Beispielprogramm‎
	‎1.4.6.1 Überblick‎
	‎1.4.6.2 Programmiertemplate "ctrlX CORE Axis/Kin-Interface"‎
	‎1.4.6.3 Bibliothek CXA_MotionInterfaceUser.library"‎
	‎1.4.6.4 Kinematik-Interface Visualisierungen‎
	‎1.4.6.4.1 Überblick‎
	‎1.4.6.4.2 Systemübersicht-Visualisierung‎

	‎1.4.7 Kinematik-Interface Anwender-Erweiterung‎
	‎1.4.7.1 Überblick‎
	‎1.4.7.2 Erweitern der arKinCtrl_gb[]-Struktur‎
	‎1.4.7.3 Erweitern der arKinStatus_gb[] Struktur‎
	‎1.4.7.4 Erweitern des Funktionsbausteines‎

	‎1.4.8 HowTo: Typische Anwenderaktivitäten‎
	‎1.4.8.1 Zugriff auf Kinematikdaten‎
	‎1.4.8.2 Anpassung der maximalen Kinematikanzahl‎
	‎1.4.8.3 Anpassung der Zuordnung Kinematikname<>KinematikIndex‎
	‎1.4.8.4 Kinematik hinzufügen‎
	‎1.4.8.5 Kinematik entfernen/umbenennen‎
	‎1.4.8.6 Kinematik-Interface Erweiterungen‎

	‎1.5 IMC-Interface‎
	‎1.5.1 Einführung und Übersicht‎

