
Einführung und Übersicht

CXA_MotionInterface.library

131.07.2020

Allgemeines

Komponenten des MotionInterface

Achs-Interface

1 CXA_MotionInterface.library
1.1 Einführung und Übersicht

Die SPS-Bibliotheken CXA_MotionInterface und CXA_MotionInter-
faceUser und das dazugehörige Programm-Template stellen Funk-
tionen zur Ansteuerung von Achsen und Kinematiken zur Verfü-
gung.

Alternativ zu den Einzel-Funktionen der SPS-Bibliotheken
CXA_Motion bzw. CXA_PLCopen ist das MotionInterface ein fer-
tiger Programmrahmen und stellt ein einfach zu bedienendes Inter-
face für die Achs- bzw. Kinematik-Funktionalität zur Verfügung.

Weniger Code und leistungsfähigere Kommandos beschleunigen
die Programmentwicklung von Applikationen.

Zur Nutzung der Bibliothek muss die App rexroth-motion installiert
sein.

■ CXA_MotionInterface.compiled-library: Basisbibliothek mit den
Basis-Funktionsbausteinen und Basis-Strukturen.

■ CXA_MotionInterfaceUser.library: offene Bibliothek mit erwei-
terten Funktionsbausteinen, erweiterten Strukturen, Pro-
grammen und Visualisierungen. Hier sind auch die globalen
Variablen der Interfaces instanziiert. Hier sind Anpassungen /
Erweiterungen der Interfaces durch den Anwender möglich.

■ Programm-Template "ctrlX CORE Axis/Kin-Interface": enthält
den Aufruf der notwendigen Programme und Beispielcode. Das
Template wird angeboten beim Anlegen eines neuen Projektes
im ctrlX PLC Engineering.

Das Achs-Interface enthält in der Kontrollstruktur Steuersignale
und Parameter für die verschiedenen Betriebsarten der Achsen. In
der Statusstruktur werden Istwerte, Statusbits, Diagnoseinformati-
onen und Quittungen für die Betriebsarten zur Verfügung gestellt.

Die Strukturen werden als Arrays zur Verfügung gestellt. Dies
erlaubt FOR-Schleifen über alle Achsen. Die Adressierung der
Achsen erfolgt über den Index in den Strukturen. Die Zuordnung
des Achs-Index zum Achs-Namen kann automatisch erfolgen oder
durch den Anwender definiert werden (siehe Programm-Template).

Tab. 1: Zuordnung Anwender-Interface zur Achs-Interface-Datenstruktur:

Anwender-Interface Typ Beschreibung

arAxisCtrl[]_gb TE_AXIS_CONTROL_TYPE01 Steuerungsstruktur inklusive Sollwerte und
Variablen zum Aktivieren der Betriebsarten

arAxisStatus[]_gb TE_AXIS_STATUS_TYPE01 Statusstruktur inklusive Diagnoseinfo,
Quittungen für die Betriebsarten, Istwerte
und Statusbits

MotionInterface - Erstkonfiguration

CXA_MotionInterface.library

2 31.07.2020

Kinematik-Interface

IMC-Interface

Das Kinematik-Interface enthält in der Kontrollstruktur Steuersig-
nale und Parameter für die verschiedenen Betriebsarten der Kine-
matiken. In der Statusstruktur werden Istwerte, Statusbits, Diagno-
seinformationen und Quittungen für die Betriebsarten zur
Verfügung gestellt.

Die Strukturen werden als Arrays zur Verfügung gestellt. Dies
erlaubt FOR-Schleifen über alle Kinematiken. Die Adressierung der
Kinematiken erfolgt über den Index in den Strukturen. Die Zuord-
nung des Kinematik-Index zum Kinematik-Namen kann automa-
tisch erfolgen oder durch den Anwender definiert werden (siehe
Programm-Template).

Das Kinematik-Interface nutzt intern das Achs-Interface. Es ist also
zwingend erforderlich auch das Achs-Interface aufzurufen.

Tab. 2: Zuordnung Anwender-Interface zur Kinematik-Interface-Datenstruktur:

Anwender-Interface Typ Beschreibung

arKinCtrl[]_gb TE_KINEMATICS_CON-
TROL_TYPE01

Steuerungsstruktur inklusive Sollwerte und
Variablen zum Aktivieren der Betriebsarten

arKinStatus[]_gb TE_KINEMA-
TICS_STATUS_TYPE01

Statusstruktur inklusive Diagnoseinfo,
Quittungen für die Betriebsarten, Istwerte
und Statusbits

Das IMC-Interface (Interface-Motion-Control) enthält in der Kon-
trollstruktur Steuersignale für die App rexroth-motion. In der Status-
struktur werden Statusbits und Diagnoseinformationen der App
rexroth-motion zur Verfügung gestellt.

Das IMC-Interface wird intern von Achs- und Kinematik-Interface
genutzt um bei Erreichen des Zustandes "Running" die Initialisie-
rung zu starten.

Das Programm MB_ImcInterface wird bereits vom Achs-Interface
intern aufgerufen. Ein zusätzlicher Aufruf ist nur notwendig, wenn
das IMC-Interface ohne Achs-Interface genutzt wird.

Tab. 3: Zuordnung Anwender-Interface zur IMC-Interface-Datenstruktur:

Anwender-Interface Typ Beschreibung

ImcCtrl MB_IMC_CONTROL_TYPE01 Steuerungsstruktur zur Vorgabe des
Motion Modus und zum Fehler löschen

ImcStatus MB_IMC_STATUS_TYPE01 Statusstruktur mit dem aktuellen Motion
Modus und Diagnoseinformationen

1.2 MotionInterface - Erstkonfiguration
Bevor die Funktionalität des MotionInterfaces benutzt werden
kann, muss dieses zuerst initialisiert werden. Die folgenden
Schritte aktivieren das Achs- und Kinematik-Interface in ctrlX PLC
Engineering.

MotionInterface - Erstkonfiguration

CXA_MotionInterface.library

331.07.2020

Viele der in diesem Abschnitt beschriebenen Schritte sind schon
im Programm-Template "ctrlX CORE Axis/Kin-Interface" enthalten.
Dieses Template kann in ctrlX PLC Engineering importiert und als
Leitfaden für neue Projekte benutzt werden. Bei Verwendung der
Vorlage "ctrlX CORE Axis/Kin-Interface" ist das Handling des
Achs- und Kinematik-Interface inklusive möglicher Erweiterungen
durch den Anwender komplett lauffähig ausprogrammiert.

Erste Schritte bei Verwendung des Beispielprojektes "ctrlX CORE
Axis/Kin-Interface" .

1. Im ctrlX PLC Engineering ein neues Projekt anlegen. Im
Dialog das Template "ctrlX CORE Axis/Kin-Interface" aus-
wählen. Weitere Schritte der Dialogabfolge fertigstellen.

2. Das eingefügte Programm ist auf einer "ctrlX COREvirtual"
komplett lauffähig. Für die Aktualisierung der "ctrlX COREvir-
tual" oder der Nutzung realer Hardware rechte Maustaste auf
das Device und "Gerät aktualisieren". Gewünschte Steue-
rung "ctrlX CORE" oder "ctrlX COREvirtual" auswählen.

3. Doppelklick auf das Device und die Kommunikationseinstel-
lungen vornehmen. Sie können die SPS-Applikation ein-
loggen, starten und über die Visualisierungen "Overvie-
wAxes" bzw. "OverviewKinematics" die Funktion testen. Die
Zuordnung AchsName <> AchsIndex bzw. KinName <> Kin-
Index erfolgt per Default automatisch.

4. Im Bibliotheksverwalter die Bibliothek CXA_MotionInterfa-
ceUser auswählen und die Biblitotheksparameter
"MOTIF_CONFIG" öffnen. Hier können Sie die Arrays an die
Anzahl Ihrer Achsen bzw. Kinematiken anpassen. Wählen
Sie einen anderen Konfigurationsmodus aus, um die Zuord-
nung AchsName <> AchsIndex bzw. KinName <> KinIndex
selbst zu definieren.

5. Benutzen Sie nun arAxisCtrl_gb[], arAxisStatus_gb[],
arKinCtrl_gb[], arKinStatus_gb[] zum Programmieren Ihrer
Applikation.

Erste Schritte bei Nutzung eines eigenen Programmes.

1. Öffnen Sie den Bibliotheksverwalter im Projektbaum unter
"Logic->Application" und fügen Sie die Bibliotheken
CXA_MotionInterface.compiled-library und CXA_MotionInter-
faceUser.library zum aktuellen ctrlX PLC Engineering Projekt
hinzu.

2. Rufen Sie z.B. im PlcProg die Programme TE_AxisInterface-
MainProg und TE_KinInterfaceMainProg aus der Bibliothek
CXA_MotionInterfaceUser.library auf. In der Dokumentation
der Bibliothek CXA_MotionInterfaceUser.library ist entsprech-
ender Beispielcode hinterlegt im Programm "KinInterfa-
ceUser/_Examples/Example_KinIfApplicationPart". Alternativ
im ctrlX PLC Engineering ein neues Projekt mit dem Tem-
plate "ctrlX CORE Axis/Kin-Interface" anlegen und mit
Export/Import die benötigten Teile in das eigene Programm
übertragen.

Achs-Interface

CXA_MotionInterface.library

4 31.07.2020

3. Im Bibliotheksverwalter die Bibliothek CXA_MotionInterfa-
ceUser auswählen und die Biblitotheksparameter
"MOTIF_CONFIG" öffnen. Hier können Sie die Arrays an die
Anzahl Ihrer Achsen bzw. Kinematiken anpassen. Wählen
Sie einen anderen Konfigurationsmodus aus, um die Zuord-
nung Achsname <> Achsindex bzw. KinName <> KinIndex
selbst zu definieren.

4. Optional: wenn sie zur Inbetriebnahme der Achsen die mitge-
lieferten Visualisierungen nutzen möchten, legen Sie eine
neue Visualisierung mit dem Namen "OverviewAxes" an.

■ Oben legen Sie einen neuen Frame an und wählen dafür
die Visualisierung "OverviewAxesHeader" aus der Biblio-
thek CXA_MotionInterfaceUser.library aus.

■ Darunter für jede Achse einen Frame "OverviewOneAxis"
und übergeben als "m_Input_AxisIndex" den jeweiligen
AchsIndex.

5. Optional: wenn sie zur Inbetriebnahme der Kinematiken die
mitgelieferten Visualisierungen nutzen möchten, legen Sie
eine neue Visualisierung mit dem Namen "OverviewKinema-
tics" an.

■ Oben legen Sie einen neuen Frame an und wählen dafür
die Visualisierung "OverviewKinematicsHeader" aus der
Bibliothek CXA_MotionInterfaceUser.library aus.

■ Darunter für jede Achse einen Frame "OverviewOneKine-
matics" und übergeben als "m_Input_KinIndex" den jewei-
ligen KinIndex.

6. Benutzen Sie nun arAxisCtrl_gb[], arAxisStatus_gb[],
arKinCtrl_gb[], arKinStatus_gb[] zum Programmieren Ihrer
Applikation.

1.3 Achs-Interface
1.3.1 Einführung und Übersicht

Das Achs-Interface bündelt und erweitert PLCopen-Bewegungs-
funktionsbausteine und stellt ein einfach zu bedienendes Interface
für die Antriebsfunktionalität zur Verfügung.

Weniger Code und leistungsfähigere Kommandos beschleunigen
die Programmentwicklung von Applikationen.

Das Achs-Interface enthält Steuersignale und Parameter für die
verschiedenen Betriebsarten der Achsen sowie Einstellmöglich-
keiten für angewählte Prozesswerte.

Tab. 4: Programmorganisationseinheiten des Achs-Interface in der Bibliothek CXA_MotionInterface

Anwendungsgebiet (Ordner in der Bibliothek CXA_MotionInterface)

POUs Beschreibung

AxisInterface/POUs

Achs-Interface

CXA_MotionInterface.library

531.07.2020

  , Seite Wird zur Initialisierung des Achs-Interfaces für eine
einzelne Achse benutzt. Der Funktionsbaustein
muss nur einmal beim Programmstart oder bei
jeder Modusumschaltung von Configuration in Run-
ning aufgerufen werden.

  , Seite Konfiguration des Achs-Interfaces für eine einzelne
Achse. Der Funktionsbaustein muss zyklisch (im
Motion-Takt oder langsamer als der Motion-Takt)
aufgerufen werden, solange man sich im Betriebs-
modus befindet

AxisInterface/DUTs

Informationen zu den Datenstrukturen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
onInterface im Ordner "AxisInterface/DUTs".

AxisInterface/GlobalVariables

Informationen zu den globalen Variablen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
onInterface im Ordner "AxisInterface/GlobalVaria-
bles".

Das Achs-Interface wird als Programmiertemplate oder als stand-
alone-Interface für die Achsfunktionalität zur Verfügung gestellt.

Wenn es mit dem Programmiertemplate "ctrlX CORE Axis-/Kin-
Interface" benutzt wird, muss sich der Anwender nicht mit Instanz-
Aufrufen der Funktionsbausteine innerhalb des Projektes
befassen. Diese Funktionalität ist komplett in das Template integ-
riert und der Anwender muss nur ein paar Zeilen Code schreiben.

Wird hingegen das Achs-Interface als eigenständige Funktionalität
benutzt, erfordert dies das Anlegen von Instanzen von beiden
Funktionsbausteinen für jede Achse durch den Anwender.

Tab. 5: Programmorganisationseinheiten des Achs-Interface in der Bibliothek CXA_MotionInterfaceUser

Anwendungsgebiet (Ordner in der Bibliothek CXA_MotionInterfaceUser)

POUs Beschreibung

AxisInterfaceUser/POUs

TE_AxisInitAllAxes Initialisierung des Achs-Interfaces für alle Achsen.
Ruft intern den  , Seite für jede Achse auf

TE_AxisInterface erweitert  , Seite Hier kann das Achs-Interface für eine einzelne
Achse durch den Anwender erweitert werden 
Kapitel 1.3.7 „Achs-Interface Anwender-Erweite-
rung “ auf Seite 36. Der Funktionsbaustein muss
zyklisch (im Motion-Takt oder langsamer als der
Motion-Takt) aufgerufen werden, solange man sich
im Betriebsmodus befindet

Achs-Interface

CXA_MotionInterface.library

6 31.07.2020

Projektierungshinweis/Laufzeitbedarf

TE_AxisInterfaceMainProg Das Hauptprogramm führt bei Erreichen des Modus
"Running" die Initialisierung aus und nach erfolgrei-
cher Initialisierung wird der TE_AxisInterface für
alle Achsen aufgerufen

TE_GetAxisInterfaceIndex Liefert den Index einer Achse, anhand des Achs-
Namen

Weitere Informationen siehe Online-Dokumentation
in der Bibliothek CXA_MotionInterfaceUser im
Ordner "AxisInterfaceUser/POUs".

AxisInterfaceUser/DUTs

Informationen zu den Datenstrukturen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
onInterfaceUser im Ordner "AxisInterfaceUser/
DUTs".

AxisInterfaceUser/GlobalVariables

Global_AxisInterface Hier ist das eigentliche Achs-Interface mit den
Arrays arAxisCtrl_gb und arAxisStatus_gb zu
finden. Die weiteren Variablen werden intern bzw.
von den Visualisierungen genutzt.

Siehe auch Kapitel 1.3.4 „ Achs-Interface - Glo-
bale Variablen “ auf Seite 27

AxisInterfaceUser/Visualizations

 Kapitel 1.3.6.4 „Achs-Interface Visualisierungen “
auf Seite 34

Inbetriebnahmevisualisierungen, z.B. zum Ver-
tippen der Achsen

AxisInterfaceUser/_AxifDebug

Bei Problemen kann mit Hilfe der POUs in diesem
Ordner der Ablauf der Motion-Befehle aufge-
zeichnet werden.

Informationen zu diesem Debug-Feature siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
onInterfaceUser im Ordner "AxisInterfaceUser/
_AxifDebug". Ein HowTo ist in der Dokumentation
des Programmes "TE_AxIfDebugProg" zu finden.

AxisInterfaceUser/_Examples

PROGRAM Example_AxIfApplicationPart Beispielcode zur Anwendung des Achs-Interfaces.
Im Programm-Template "ctrlX CORE Axis-/Kin-
Interface" ist dieser Beispielcode auch enthalten.

Für jede Achse des Achs-Interface wird der Achs-Interface-Funkti-
onsbaustein aufgerufen. Dieser Aufruf benötigt Laufzeit der SPS.
Diese Laufzeit variiert je nach Achstyp und Achsbetriebsart.

Achs-Interface

CXA_MotionInterface.library

731.07.2020

Abb. 1: Achs-Interface Datenstruktur des Interface

Tab. 6: Zuordnung Anwender-Interface zur Achs-Interface-Datenstruktur:

Anwender-Inter-
face

Typ Beschreibung

arAxisCtrl[]_gb TE_AXIS_CON-
TROL_TYPE01

Steuerungsstruktur inklusive Sollwerte und Vari-
ablen zum Aktivieren der Betriebsarten

arAxisStatus[]_gb TE_AXIS_STATUS_TYPE01 Statusstruktur inklusive Diagnoseinfo, Quittungen
für die Betriebsarten, Istwerten und Statusinforma-
tion der App rexroth-motion.

Achs-Interface

CXA_MotionInterface.library

8 31.07.2020

EnableCyclicScanning

Abb. 2: Überblick über die Datenstrukturen des Achs-Interface

Benutzen Sie die AxisNo der MB_AXISIF_REF-Struktur als Index
für das Feld, z. B. arAxisCtrl_gb[MyVirtualAxis.AxisNo].Admin.
usw.

Die interne Handhabung einiger Sollwerte kann durch das arA-
xisCtrl_gb[].Admin.Config.EnableCyclicScanning Element
gesteuert werden.

Wird "EnableCyclicScanning" auf TRUE gesetzt, werden einige
Sollwerte der arAxisCtrl_gb[]-Struktur zyklisch gescannt und sofort
wirksam, wenn sich ein Wert ändert.

Achs-Interface

CXA_MotionInterface.library

931.07.2020

UpdateEveryInput

Abb. 3: Zyklisch gescannte Elemente von arAxisCtrl_gb[] sind hervorgehoben

Die oben gezeigten nicht zyklisch gescannten Daten werden bei
einer Änderung eines zyklisch gescannten Elementes ebenfalls
übernommen, wenn der Eingang "UpdateEveryInput" gesetzt
wurde.

Beispiel: die Betriebsart "relatives Positionieren" wurde mit den
oben gezeigten Werten Velocity=10 und JerkAcc=0 gestartet.

Achs-Interface

CXA_MotionInterface.library

10 31.07.2020

Was ist neu bzw. geändert gegenüber
der Version für MLC/MLD

Um den nächsten Positioniervorgang mit einer geänderten
Beschleunigung zu starten, wird der Eingang "PosMode.DynVa-
lues.JerkAcc" von 0 auf 100 geändert und danach die nächste Dis-
tance geschrieben.

Mit dem Ändern der Distance wird auch der Ruck übernommen.

− Bei der Aktivierung einer Betriebsart (.Admin._OpMode)
werden, unabhängig von der Einstellung des "EnableCyclicS-
canning"-Eingangs, alle Eingangsdaten gelesen

− Wenn "EnableCyclicScanning" = TRUE, werden alle Eingangs-
daten, die grün hervorgehoben sind, zyklisch gelesen. Das
bedeutet, dass nach Aktivierung einer Betriebsart jede Ände-
rung der Werte sofort gelesen wird

− Im Gegensatz dazu werden alle Eingangsdaten, die blau her-
vorgehoben sind, nicht zyklisch gescannt. Das bedeutet, dass
die Werte nur gelesen werden, wenn eine Betriebsart aktiviert
wird

− Wenn "UpdateEveryInput" = TRUE, werden alle Eingangs-
daten, die blau hervorgehoben sind auch übernommen, wenn
eines der zu dieser Betriebsart gehörenden zyklisch
gescannten Elemente geändert wird

− Die Datenkonsistenz wird durch "EnableCyclicScanning"
(FALSE→Daten schreiben→TRUE) erreicht

Für Inbetriebnahmezwecke stehen verschiedene Visualisierungen,
basierend auf den Strukturelementen, die in diesem Abschnitt
beschrieben werden, in der Bibliothek CXA_MotioninterfaceUser
zur Verfügung.

■ Es wurden Teile des ereignisgesteuerten Achs-Interface (Funk-
tionsbaustein MB_AxisInterfaceType11) übernommen. Die
Strukturelemente sind zum Teil als Properties implementiert.
Die Unterstrukturen sind dann als Funktionsbausteine anstatt
Strukturen implementiert um Properties nutzen zu können. In
einer Struktur ist eine Methode arAxisCtrl_gb[].Admin.mTrigger-
MoveCmd() implementiert.

■ Die Betriebsartenanwahl arAxisCtrl_gb[].Admin._OpMode ist
nicht mehr als "UNION" implementiert sondern als Properties
umgesetzt. Bei der Ansteuerung über Bits (_OpModeBits) ist
damit keine Mehrfachanwahl mehr möglich.

■ Selten verwendete Elemente von arAxisCtrl_gb[].Admin wurden
in arAxisCtrl_gb[].Admin.Config verschoben (siehe Tabelle
unten).

■ Werte vom Typ REAL werden jetzt generell als LREAL in den
Strukturen definiert.

■ Es gibt keine AxisData[] Struktur. Die aktuellen Istwerte und
einige Statusbits sind in arAxisStatus_gb[].Data zu finden.

Achs-Interface

CXA_MotionInterface.library

1131.07.2020

Kurzbeschreibung

Tab. 7: Folgende Code-Änderungen sind bei einer Portierung von MLC/MLD mindestens notwendig
(Suchen/Ersetzen).

Code MLC/MLD Ersetzen durch

Kontrollstruktur arAxisCtrl_gb[]

_OpMode.en _OpMode

_OpMode.b _OpModeBits

Admin.StopDeceleration StopMode.StopDeceleration

Admin.Axis Admin.Config.Axis

Admin.DiagNbrRefreshTime Admin.Config.DiagNbrRefreshTime

Admin.EnableExtClearError Admin.Config.EnableExtClearError

Admin.EnableCyclicScanning Admin.Config.EnableCyclicScanning

Admin.UpdateEveryInput Admin.Config.UpdateEveryInput

Admin.PowerOn Admin.Config.PowerOn

PosMode.Acceleration PosMode.DynValues.Acceleration

PosMode.Deceleration PosMode.DynValues.Deceleration

SetupMode.Accel SetupMode.DynValues.Acceleration

Kontrollstruktur arAxisStatus_gb[]

Admin.MODE_AH Admin._OpModeAckBits.MODE_AH

Admin.MODE_COORDINATED Admin._OpModeAckBits.MODE_COORDINATED

Admin.MODE_EXTERNAL_FB Admin._OpModeAckBits.MODE_EXTERNAL_FB

Admin.MODE_POS_ABS Admin._OpModeAckBits.MODE_POS_ABS

Admin.MODE_POS_ADD Admin._OpModeAckBits.MODE_POS_ADD

Admin.MODE_POS_REL Admin._OpModeAckBits.MODE_POS_REL

Diese Liste der Code-Änderungen ist nicht vollständig. Bei der Por-
tierung ist eine generelle Überprüfung des Programm-Codes not-
wendig.

1.3.2 Achs-Interface - Funktionsbausteine
1.3.2.1 MB_AxisInit

Der Funktionsbaustein MB_AxisInit wird zur Initialisierung des
Achs-Interfaces ( , Seite , für eine einzelne Achse benutzt.

Achs-Interface

CXA_MotionInterface.library

12 31.07.2020

Der Funktionsbaustein muss nur einmal beim Programmstart oder
bei jeder Modusumschaltung von "Configuration" in "Running" auf-
gerufen werden. In der Vorlage "ctrlX CORE Axis/Kin-Interface" ist
dies bereits implementiert.

Schnittstellenbeschreibung

Abb. 4: Funktionsbaustein MB_AxisInit

Tab. 8: Schnittstellenvariablen MB_AxisInit

I/O-Typ Name Datentyp Kommentar

VAR_INPUT Execute BOOL Die Initialisierung wird durch eine positive
Flanke an "Execute" gestartet

AxisName STRING(15) Name der Achse

AxisIndex UINT Index in den AchsInterface Strukturen

VAR_OUTPU
T

Done BOOL Wird gesetzt, wenn der FB die Bearbeitung
beendet hat

Active BOOL Wird gesetzt, wenn der FB aktiv ist (nicht im
Leerlaufbetrieb)

Error BOOL Zeigt an, dass ein Fehler in der FB-Instanz
aufgetreten ist

ErrorID ERROR_CODE Kurzer Hinweis zur Fehlerursache

ErrorIdent ERROR_STRUCT Detaillierte Information zum Fehler

VAR_IN_OU
T

AdminCtrl MB_AXIS_ADMI-
NISTRATION

Verwaltung der Achse

arAxisCtrl_gb[i].Admin anschließen

AdminStatus MB_AXIS_ADMIN
_STATUS

Status Verwaltung der Achse

arAxisStatus_gb[i].Admin anschließen

DiagStatus MB_AXIS_DIAG-
NOSIS

Diagnoseinformationen der Achse

arAxisStatus_gb[i].Diag anschließen

Achs-Interface

CXA_MotionInterface.library

1331.07.2020

Fehlerbehandlung:

Kurzbeschreibung

Es ist nicht möglich die komplette Instanz der Strukturen (z. B. arA-
xisCtrl_gb[] / arAxisStatus_gb[]) über einen Eingang dem Funkti-
onsbaustein zu übergeben.

Dies wurde vorgenommen, um der Anwender-Applikation spezielle
Erweiterungen zum bestehenden Code zu ermöglichen. Nähere
Details finden Sie unter  , Seite .

Deshalb werden die benötigten Elemente von TE_AXIS_CON-
TROL_TYPE01 und TE_AXIS_STATUS_TYPE01 als separate Ein-
gänge übergeben.

Der Funktionsbaustein MB_AxisInit initialisiert die folgenden Struk-
turelemente mit Standardwerten:

Tab. 9: Durch den Funktionsbaustein initialisierte Strukturelemente

Strukturelement Standard

AdminCtrl._OpMode ModeAB

AdminCtrl.Config.Axis.AxisNo AxisIndex

AdminCtrl.Config.Axis.AxisName AxisName

AdminStatus.Active TRUE

AdminStatus.Name AxisName

AdminStatus.Active TRUE für aktive Achse

AdminStatus.AxisFeatures Aabhängig vom Achstyp, siehe
MB_AXIS_FEATURES in der Bibliothek.

Die Fehlercodes des intern benutzten Funktionsbausteines
DL_ReadNode zum Lesen von Datalayer Knoten werden durchge-
reicht. Der Funktionsbaustein kann die folgenden Fehlercodes
erzeugen:

Tab. 10: Fehlercodes des Funktionsbausteins MB_AxisInit

ErrorID Additional1 Additional2 Beschreibung

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230101 String AxisName ist zu
kurz oder zu lang

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C230103 Fehler im Ablauf des
Funktionsbaustein

1.3.2.2 MB_AxisInterfaceBase

Der Funktionsbaustein MB_AxisInterfaceBase wird zur Konfigura-
tion des Achs-Interfaces für eine einzelne Achse benutzt.

Achs-Interface

CXA_MotionInterface.library

14 31.07.2020

Interfacebeschreibung

Dieser Funktionsbaustein muss zyklisch (im Motion-Takt oder lang-
samer als der Motion-Takt) aufgerufen werden solange man sich
im Modus "Running" befindet. In der Vorlage "ctrlX CORE Axis/Kin-
Interface" ist dies bereits implementiert.

Abb. 5: Funktionsbaustein MB_AxisInterfaceBase

Tab. 11: Schnittstellenvariablen MB_AxisInterfaceBase

I/O-Typ Name Datentyp Kommentar

VAR_INPUT AdminCtrl REFERENCE TO
MB_AXIS_ADMI-
NISTRATION

Verwaltung der Achse, arAxisCtrl_gb[i].Admin
anschließen

StopModeCtrl REFERENCE TO
MB_AXIS_STOP_
MODE

Stoppen der Achse, arAxisCtrl_gb[i].StopMode
anschließen

PosModeCtrl REFERENCE TO
MB_AXIS_POSITI-
ONING

Positionierungsbetriebsarten, arA-
xisCtrl_gb[i].PosMode anschließen

CoordModeCtrl REFERENCE TO
MB_AXIS_COOR-
DINATED

Kinematikbetrieb, arAxisCtrl_gb[i].CoordMode
anschließen

GantryModeCtrl REFERENCE TO
MB_AXIS_GANTR
Y

Betriebsart Gantry, arAxisCtrl_gb[i].GantryMode
anschließen

AdminStatus REFERENCE TO
MB_AXIS_ADMIN
_STATUS

Status Verwaltung der Achse, arAxis-
Status_gb[i].Admin anschließen

DataStatus REFERENCE TO
MB_AXIS_DATA

Istwerte und Status der Achse, arAxis-
Status_gb[i].Data anschließen

DiagStatus REFERENCE TO
MB_AXIS_DIAG-
NOSIS

Status Diagnose der Achse, arAxis-
Status_gb[i].Diag anschließen

Achs-Interface

CXA_MotionInterface.library

1531.07.2020

Fehlerbehandlung:

Es ist nicht möglich die komplette Instanz der Strukturen (z. B. arA-
xisCtrl_gb[]/arAxisStatus_gb[]) über einen Eingang dem Funkti-
onsbaustein zu übergeben.

Dies wurde gemacht um der Anwender-Applikation spezielle
Erweiterungen zum bestehenden Code zu ermöglichen. Nähere
Details finden Sie unter  , Seite .

Deshalb werden die benötigten Elemente von TE_AXIS_CON-
TROL_TYPE01 und TE_AXIS_STATUS_TYPE01 als separate Ein-
gänge übergeben.

Zur Performanceoptimierung sind die Strukturen statt als
VAR_IN_OUT als VAR_INPUT mit REFERENCE TO ange-
schlossen. Damit reicht es einmalig die Eingänge zu initialisieren.
Beim zyklischen Aufruf des Funktionsbausteins müssen damit die
Strukturen nicht übergeben werden.

Der Funktionsbaustein überprüft die Eingänge von arAxisCtrl_gb[]
und generiert intern die angeforderten Kommandos für die Achse.
Die Ausgänge von arAxisStatus_gb[] werden aktualisiert in Abhän-
gigkeit des Ergebnisses dieser Kommandos.

Zum Beispiel führt das Setzen von "arA-
xisCtrl_gb[].Admin._OpMode" von "ModeAb" auf "ModePosAbs"
zu folgendem Ablauf:

■ Überprüfen der erforderlichen Zustände zum Aktivieren eines
Bewegungsbefehls, wie "Achse in Ab"

■ Aktivierung der Funktion ML_AxsPower (wenn arA-
xisCtrl_gb.Admin.PowerOn = TRUE)

■ Warten auf die Quittung, dass die Leistung der Achse zuge-
schaltet ist (AH/AF)

■ Aktivierung der Funktion ML_AxsPosAbs mit den Sollwerten
von PosModeCtrl

■ Quittieren des arAxisStatus_gb[].Admin._OpModeAck auf
ModePosAbs (Bit MODE_POS_ABS)

■ Scannen der Werte PosModeCtrl.Position, PosModeCtrl.Velo-
city, PosModeCtrl.DynValues.Acceleration und PosMo-
deCtrl.DynValues.Deceleration und erneutes Aktivieren des
ML_AxsPosAbs im Fall von Änderungen

Die Fehlercodes der intern benutzten Funktionsbausteine (z.B.
DL_ReadNode zum Lesen von Datalayer Knoten) und der intern
benutzten Funktionen ((z.B. ML_AxsPower) werden durchge-
reicht. Der Funktionsbaustein kann die folgenden Fehlercodes
erzeugen:

Tab. 12: Fehlercodes des Funktionsbausteins MB_AxisInterfacebase

ErrorID Additional1 Additional2 Beschreibung

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230110 Mindestens einer der
Funktionsbaustein-Ein-
gänge ist nicht initial-
isiert

DEVICE_ERROR 16#0A0F0107 16#0C230111 Achse ist im ErrorStop

Achs-Interface

CXA_MotionInterface.library

16 31.07.2020

ErrorID Additional1 Additional2 Beschreibung

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C230113 Fehler im Ablauf des
Funktionsbaustein

RESOURCE_ERROR 16#0A0F0107 16#0C230115 Ctrl.Admin.PowerOn ist
auf FALSE eingestellt,
eine Betriebsart wurde
angewählt aber der
Antrieb ist nicht in
AH/AF

RESOURCE_ERROR 16#0A0F0107 16#0C230116 Mit der Methode
Ctrl.Admin.mTriggerMo-
veCmd() wurde in
ModeAb eine
Betriebsart angewählt

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230117 OpMode wird von dem
Funktionsbaustein in
dieser Variante nicht
unterstützt

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C230118 Fehler im Ablauf des
Funktionsbaustein -
Power

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C230119 Fehler im Ablauf des
Funktionsbaustein -
Reset

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C23011A Fehler im Ablauf des
Funktionsbaustein -
Stop

1.3.3 Achs-Interface - Betriebsarten
1.3.3.1 Überblick

Es gibt drei Methoden um eine Betriebsart zu aktivieren:

■ Auswahl über ENUM-Werte
Zuweisen eines Wertes vom TYPE MB_AXIS_MODE an
arAxisCtrl_gb[].Admin._OpMode:
arAxisCtrl_gb[].Admin._OpMode:= ModePosAbs;
- oder -
arAxisCtrl_gb[].Admin._OpMode:= ModeAB;

■ Benutzung des Bit-Zugriffs
Setzen eines Bits über die Bit-Zugriffs Funktionalität.
arAxisCtrl_gb[].Admin._OpMode-
Bits.MODE_POS_ABS:= TRUE;
Löschen des "_OpMode" durch Bit-Zugriffs Funktionalität ist
auch möglich.

Achs-Interface

CXA_MotionInterface.library

1731.07.2020

arAxisCtrl_gb[].Admin._OpMode-
Bits.MODE_POS_ABS := FALSE; Durch das Bit-Löschen
wird MODE_AB aktiviert.
Auch möglich: arAxisCtrl_gb[].Admin._OpMode-
Bits.MODE_AB := TRUE;

■ Benutzung der Methode Ctrl.Admin.mTriggerMoveCmd()
Siehe auch "DemoBufferedAxisCommands" in der Vorlage
"ctrlX CORE Axis/Kin-Interface"
Diese Methode setzt sofort in dem Kontext dieses Aufrufes den
Befehl an die Motion-Firmware ab. Damit dies funktioniert,
muss die Achse bereits freigegeben sein, z.B. ModeAH und
CmdDone abfragen.
Aufruf: arAxisCtrl_gb[uiAxisIndex].Admin.mTrig-
gerMoveCmd(_OpMode:= ModePosAbs, Buf-
fered:=TRUE, UserID:='my text');
– Übergabeparameter _Opmode = Wert vom TYPE

MB_AXIS_MODE
– Übergabeparameter Buffered = TRUE: Kommando wird erst

aktiv, wenn das vorhergehende Kommando abgeschlossen
ist

– Übergabeparameter Buffered = FALSE: das vorhergehende
Kommando wird abgebrochen

– Übergabeparameter UserID = String (max. 25 byte). Wird als
"Source" übergeben bei Aufruf von Motionkommandos. Bei
Fehlern kann so die Quelle des Befehls identifiziert werden.

– Returnwert der Methode: "cmdID" des abgesetzten Motion-
kommandos. Bei Fehler wird 16#FFFFFFFFFFFFFFFF
zurückgegeben.

Nur mit der Methode arAxisCtrl_gb[uiAxisIndex].Admin.mTrigger-
MoveCmd() können auch gepufferte Befehle abgesetzt werden. Es
ist damit auch möglich mehrere Befehle in einem Zyklus abzu-
setzen (Buffered = TRUE).

Bevor eine Betriebsart aktiviert werden kann, müssen jedem
Attribut zuerst Werte zugewiesen werden. Alle Attribute haben
Standardwerte. Einige haben Werte ungleich Null, während andere
als 0 definiert sind und aufgrund der speziellen Anforderungen
ihnen ein Wert zugewiesen werden muss.

Nur die Attribute (z. B. Position, Geschwindigkeit), die benutzt
werden oder deren Standardwert geändert wurde, müssen dekla-
riert werden, bevor der aktuelle Betriebsartenwechsel ausgeführt
wird.

Achs-Interface

CXA_MotionInterface.library

18 31.07.2020

Die Status-Quittung (arAxisStatus_gb[].Admin.) für eine
Betriebsart ist wie folgt implementiert.

Beispiel:

− Die Status-Quittung gibt nur dann TRUE zurück, wenn das
Kommando zum Umschalten der Achse auf absolutem Positi-
onierungsbetrieb ausgeführt wurde:
arAxisStatus_gb[].Admin.MODE_POS_ABS

− Die Status-Quittung wird sofort beim Absetzen eines neuen
Kommandos zurückgesetzt:
arAxisStatus_gb[].Admin.CmdDone
Die Positionierungsbetriebsart wird aktiviert:
arAxisCtrl_gb[].Admin._OpMode.b.MODE_POS_ABS
Der Ausgang wird auf TRUE gesetzt, wenn der Antrieb in den
Positionierungsbetrieb schaltet und anfängt sich zu drehen:
arAxisStatus_gb[].Admin.MODE_POS_ABS
Hat der Antrieb die Zielposition erreicht, wird die Statusquittung
gesetzt:
arAxisStatus_gb[].Admin.CmdDone

Der Eingang arAxisCtrl_gb.Admin.PowerOn steuert die interne
Verwendung des ML_AxsPower (Bibliothek CXA_Motion) im Achs-
Interface:

■ PowerOn = TRUE (Standard): Das Achs-Interface übernimmt
die Ansteuerung des ML_AxsPower. Bei Aktivierung einer
Betriebsart wird intern zuerst der ML_AxsPower aufgerufen und
erst nach Bereitmeldung wird die eigentlich angewählte
Betriebsart aktiviert. Bei Abschaltung (ModeAb) wird der
ML_AxsPower nach Anhalten des Antriebes weggenommen

■ PowerOn = FALSE: Das Applikationsprogramm muss den
ML_AxsPower bedienen. Bei Anwahl einer Betriebsart ohne
vorherige Ansteuerung des ML_AxsPower wird ein Fehler vom
Achs-Interface ausgegeben

Der folgende Abschnitt beschreibt die Betriebsarten, die vom Achs-
Interface Basis Typ unterstützt werden und die Attribute, die zuge-
wiesen werden können. Es wird im Folgenden vom Standardwert
des Eingangs "PowerOn" (TRUE) ausgegangen.

1.3.3.2 Antrieb Bereit

Die Aktivierung dieser Betriebsart schaltet den Antrieb in AB
(Antrieb Bereit) und schaltet das Drehmoment ab. Folgendes Kom-
mando aktiviert die Betriebsart:

arAxisCtrl_gb[].Admin._OpMode:= ModeAB;

oder

Achs-Interface

CXA_MotionInterface.library

1931.07.2020

arAxisCtrl_gb[].Admin._OpModeBits.MODE_AB:= TRUE;

Das AchsInterface benutzt intern die Funktionen ML_AxsPower
und ML_AxsAbort (Bibliothek CXA_Motion), um die Umschaltung
durchzuführen.

Attribute Antrieb Bereit

Tab. 13: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl[] StopMode.StopDeceleration LREAL 99.0 Ja

StopMode.StopJerk LREAL 0.0 Nein

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_AB

BOOL entfällt

1.3.3.3 Antrieb Halt

Die Aktivierung dieser Betriebsart schaltet den Antrieb in AH
(Antrieb Halt) unter Aufrechterhaltung des Drehmoments. Die
Betriebsart "ModeAH" überführt die Achse in den PLCopen
Zustand "StandStill", d. h. ein außerhalb des Achs-Interfaces auf-
gerufener PLCopen-Funktionsbaustein wird akzeptiert und das
Achs-Interface meldet "ModeExternalFB".

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl_gb[].Admin._OpMode := ModeAH;

oder

arAxisCtrl_gb[].Admin._OpModeBits.MODE_AH :=
TRUE;

Das AchsInterface benutzt intern die Funktionen ML_AxsPower
und ML_AxsAbort (Bibliothek CXA_Motion), um die Umschaltung
durchzuführen.

Achs-Interface

CXA_MotionInterface.library

20 31.07.2020

Attribute Antrieb Halt

Tab. 14: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl[] StopMode.StopDeceleration LREAL 99.0 Ja

StopMode.StopJerk LREAL 0.0 Nein

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_AH

BOOL entfällt

Admin.CmdDone BOOL entfällt

1.3.3.4 Absolutes Positionieren

Die Aktivierung dieser Betriebsart führt eine absolute Bewegung
auf eine vorher festgelegte Zielposition aus.

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl_gb[].Admin._OpMode := ModePosAbs;

oder

arAxisCtrl_gb[].Admin._OpModeBits.MODE_POS_ABS :=
TRUE;

Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurück, wenn der Antrieb seine Zielposition erreicht
hat:

arAxisStatus_gb[].Admin.CmdDone

Das Achs-Interface benutzt intern die Funktionen ML_AxsPower
und ML_AxsPosAbs (Bibliothek CXA_Motion), um die Umschal-
tung durchzuführen.

Achs-Interface

CXA_MotionInterface.library

2131.07.2020

Attribute Absolutes Positionieren

Tab. 15: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl_gb[] PosMode.Position LREAL 0.0 Ja

PosMode.Velocity LREAL 10.0 Ja

PosMode.DynValues.Accele-
ration

LREAL 10.0 Ja

PosMode.DynValues.Decele-
ration

LREAL 10.0 Ja

PosMode.DynValues.JerkAcc LREAL 0.0 Nein

PosMode.DynValues.JerkDec LREAL 0.0 Nein

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_POS_ABS

BOOL entfällt

Admin.CmdDone BOOL entfällt

1.3.3.5 Relatives Positionieren

Die Aktivierung dieser Betriebsart führt eine relative Bewegung auf
eine vorher festgelegte Zielposition durch Addition der Pos-
Mode.Distance zur aktuellen Istposition aus.

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl_gb[].Admin._OpMode := ModePosRel;

oder

arAxisCtrl_gb[].Admin._OpModeBits.MODE_POS_REL :=
TRUE;

Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurück, wenn der Antrieb seine Zielposition erreicht
hat:

arAxisStatus_gb[].Admin.CmdDone

Achs-Interface

CXA_MotionInterface.library

22 31.07.2020

Das Achs-Interface benutzt intern die Funktionen ML_AxsPower
und ML_AxsPosRel (Bibliothek CXA_Motion), um die Umschaltung
durchzuführen.

Attribute Relatives Positionieren

Tab. 16: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl_gb[] PosMode.Distance LREAL 0.0 Ja

PosMode.Velocity LREAL 10.0 Ja

PosMode.DynValues.Accele-
ration

LREAL 10.0 Ja

PosMode.DynValues.Decele-
ration

LREAL 10.0 Ja

PosMode.DynValues.JerkAcc LREAL 0.0 Nein

PosMode.DynValues.JerkDec LREAL 0.0 Nein

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_POS_REL

BOOL entfällt

Admin.CmdDone BOOL entfällt

1.3.3.6 Additives Positionieren

Die Aktivierung dieser Betriebsart führt eine relative Bewegung auf
eine vorher festgelegte Zielposition durch Addition der Pos-
Mode.Distance zur aktuellen Zielposition aus.

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl_gb[].Admin._OpMode := ModePosAdd;

oder

arAxisCtrl_gb[].Admin._OpModeBits.MODE_POS_ADD:=
TRUE;

Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurück, wenn der Antrieb seine Zielposition erreicht
hat:

Achs-Interface

CXA_MotionInterface.library

2331.07.2020

arAxisStatus_gb[].Admin.CmdDone

Das Achs-Interface benutzt intern die Funktionen ML_AxsPower
und ML_AxsPosAdd (Bibliothek CXA_Motion), um die Umschal-
tung durchzuführen.

Attribute Additives Positionieren

Tab. 17: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl_gb[] PosMode.Distance LREAL 0.0 Ja

PosMode.Velocity LREAL 10.0 Ja

PosMode.DynValues.Accele-
ration

LREAL 10.0 Ja

PosMode.DynValues.Decele-
ration

LREAL 10.0 Ja

PosMode.DynValues.JerkAcc LREAL 0.0 Nein

PosMode.DynValues.JerkDec LREAL 0.0 Nein

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_POS_ADD

BOOL entfällt

Admin.CmdDone BOOL entfällt

1.3.3.7 Betriebsart "Robot-Control"

Die Aktivierung dieser Betriebsart schaltet den entsprechenden
Antrieb in zyklische Lageregelung (antriebsgeführt). Des Weiteren
wird die entsprechende Achse automatisch zu einer Kinematik
gruppiert. Die so gruppierten Achsen können dann eine koordi-
nierte Bewegung ausführen.

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl_gb[].Admin._OpMode := ModeCoordinated;

oder

Achs-Interface

CXA_MotionInterface.library

24 31.07.2020

arAxisCtrl_gb[].Admin._OpModeBits.MODE_COORDI-
NATED:= TRUE;

Die Rückmeldung dieser Betriebsart TRUE erfolgt in der Achssta-
tusstruktur:

arAxisStatus_gb[].Admin._OpModeAckBits.MODE_COOR-
DINATED;

Das Achs-Interface benutzt intern die Funktionen ML_AxsPower,
ML_AxsAddToKin und ML_AxsRemoveFromKin (Bibliothek
CXA_Motion), um die Umschaltung durchzuführen.

Attribute Betriebsart Robot-Control

Tab. 18: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl_gb[] CoordMode.KinName STRING(15) Nein

Deklaration:

z. B: Kin1: MB_AXESGROUPIF_REF :=(Kin-
Name:='Kin1',GroupNo:=0);

Zuweisung:

z. B: arAxisCtrl_gb[uiAxisIndex].CoordMode.KinName := Kin1.Kin-
Name;

1.3.3.8 Betriebsart "Gantry"

Die Aktivierung dieser Betriebsart schaltet den entsprechenden
Antrieb in zyklische Lageregelung (antriebsgeführt). Des Weiteren
wird die entsprechende Achse automatisch einem Gantry-Master
angekoppelt. Die Achse folgt dem Gantry-Master im PLCopen
Zustand "SYNCHRONIZED_MOTION".

Folgendes Kommando aktiviert die Betriebsart:

Achs-Interface

CXA_MotionInterface.library

2531.07.2020

arAxisCtrl_gb[].Admin._OpMode := ModeGantry

oder

arAxisCtrl_gb[].Admin._OpModeBits.MODE_GANTRY:=
TRUE;

Die Rückmeldung dieser Betriebsart TRUE erfolgt in der Achssta-
tusstruktur:

arAxisStatus_gb[].Admin._OpModeAck-
Bits.MODE_GANTRY;

Das Achs-Interface benutzt intern die Funktionen ML_AxsPower,
ML_AxsAddToGantry und ML_AxsRemoveFromGantry (Bibliothek
CXA_Motion), um die Umschaltung durchzuführen.

Attribute Betriebsart Gantry

Tab. 19: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxisCtrl_gb[] GantryMode.Master AXIS_REF Nein

Deklaration:

z. B: Master1: AXIS_REF :=(AxisName:='Axis1');

Zuweisung:

z. B: arAxisCtrl_gb[uiAxisIndex].GantryMode.Master := Master1;

1.3.3.9 Betriebsart "Externer Funktionsbaustein"

Wenn sich die Achse bereits in einer Betriebsart befindet, dann
wird bei der Aktivierung dieser Betriebsart kein Bewegungsbefehl
vom Achs-Interface ausgeführt.

Wird die Betriebsart von ModeAb auf ModeExternalFB geändert,
dann schaltet das Achs-Interface den Antrieb in AH und wartet auf
einen externen Bewegungsbefehl, z. B. von einer Technologiefunk-
tion.

Achs-Interface

CXA_MotionInterface.library

26 31.07.2020

Folgendes Kommando aktiviert die Betriebsart:

arAxisCtrl_gb[].Admin._OpMode := ModeExternalFB;

oder

arAxisCtrl_gb[].Admin._OpMode-
Bits.MODE_EXTERNAL_FB:= TRUE;

Das Achs-Interface benutzt intern die Funktion ML_AxsPower (Bib-
liothek CXA_Motion), um die Umschaltung durchzuführen.

Attribute Betriebsart Externer Funktionsbaustein

Tab. 20: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_EXTERNAL_FB

BOOL entfällt

1.3.3.10 Benutzerdefinierte Betriebsarten

Bei benutzerdefinierbaren Betriebsarten werden die Motion-Kom-
mandos in der anwenderspezifischen Erweiterung in der Bibiliothek
CXA_MotionInteraceUser festgelegt. Damit können Anwender
eigene Betriebsarten und deren Motion-Kommandos frei imple-
mentieren. Es stehen insgesamt 10 benutzerdefinierte Betriebs-
arten (ModeUserXx_User_0...ModeUserXx_User_9) zur Verfü-
gung. Für ModeUserXx_User_0 ist bereits eine
Beispielimplementation vorhanden.

Wenn sich die Achse bereits in einer Betriebsart befindet, dann
wird bei der Aktivierung dieser Betriebsart kein Bewegungsbefehl
vom Achs-Interface ausgeführt.

Wird die Betriebsart von ModeAb auf Mode-
UserXx_User_0...ModeUserXx_User_9 geändert, dann schaltet
das Achs-Interface den Antrieb in AH und wartet auf einen Bewe-
gungsbefehl aus der Erweiterung im Applikationsteil.

Folgendes Kommando aktiviert die erste benutzerdefinierte
Betriebsart:

Achs-Interface

CXA_MotionInterface.library

2731.07.2020

arAxisCtrl_gb[].Admin._OpMode := Mode-
UserXx_User_0;

oder

arAxisCtrl_gb[].Admin._OpMode-
Bits.MODE_XX_USER_0:= TRUE;

Das Achs-Interface benutzt intern die Funktion ML_AxsPower (Bib-
liothek CXA_Motion), um die Umschaltung durchzuführen.

Attribute der benutzerdefinierten Betriebsarten

Tab. 21: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_XX_USER_0...9

BOOL entfällt

1.3.4 Achs-Interface - Globale Variablen
Die Bibliothek CXA_MotionInterfaceUser enthält im Ordner "AxisIn-
terfaceUser/GlobalVariables" die globale Variablenliste
"Global_AxisInterface".

Diese Liste enthält die folgenden Strukturen/Variablen:

Name Type Beschreibung

arAxisCtrl_gb[] ARRAY [] OF TE_AXIS_CON-
TROL_TYPE01

Kontrollstruktur des AchsInter-
face

arAxisStatus_gb[] ARRAY [] OF
TE_AXIS_STATUS_TYPE01

Statusstruktur des AchsInterface

arAxisIdx_gb ARRAY [] OF UINT Nicht lückende Liste der Achsen

uiNofAxis_gb UINT Anzahl der aktiven Achsen

VisuAxisNo INT Umschaltung des Achsindex in
den Visualisierungen

bRemoteOn_gb BOOL TRUE: Visualisierung ist aktiv

Achs-Interface

CXA_MotionInterface.library

28 31.07.2020

1.3.5 Achs-Interface - Strukturen
1.3.5.1 Überblick

Das Achs-Interface stellt eine Datenschnittstelle zur komfortablen
Ansteuerung der Achsen zur Verfügung.

Informationen zu den Datenstrukturen siehe Online-Dokumentation
in den Bibliotheken CXA_MotionInterface im Ordner "AxisInterface/
DUTs" bzw. in CXA_MotionInterfaceUser im Ordner "AxisInterfa-
ceUser/DUTs".

Das Programm-Template "ctrlX CORE Axis/Kin-Interface" ist so
vorbereitet, dass es durch den Anwender erweiterbar ist bzw. es
sind einige Erweiterungen schon mit eingebaut. Um diese Erweite-
rungen zu ermöglichen, ist es nötig, eigene Strukturen im Anwen-
derprojekt zu definieren, die die Strukturen der Bibliothek erwei-
tern. Die erweiterteten Strukturen sind durch den Präfix "TE_"
gekennzeichnet. Wenn also imProgramm-Template "ctrlX CORE
Axis/Kin-Interface" eine Struktur, z.B. TE_AXIS_ADMIN_STATUS
heisst, ist diese eine erweiterte Struktur der
MB_AXIS_ADMIN_STATUS.

Informationen zu der Struktur sind in der Online-Dokumentation
unter dem Namen MB_AXIS_ADMIN_STATUS in der Bibliothek
CXA_MotionInterface und unter dem Namen
TE_AXIS_ADMIN_STATUS in der Bibliothek CXA_MotionInterfa-
ceUser zu finden.

1.3.6 Achs-Interface - Beispielprogramm
1.3.6.1 Überblick

In diesem Kapitel soll ein Überblick über die als offener Code ver-
fügbaren Teile des Achs-Interface gegeben werden.

Die offenen Programmteile werden mit den folgenden Elementen
geliefert:

■ Das Programmiertemplate "ctrlX CORE Axis/Kin-Interface"
dient als Beispielapplikation für das Achs-Interface. Siehe auch

 Kapitel 1.2 „MotionInterface - Erstkonfiguration “ auf Seite 2
■ Die Bibliothek CXA_MotionInterfaceUser.library kann durch den

Anwender verändert werden um das Achs-Interface an die
jeweilige Applikation anzupassen. Siehe auch Kapitel 1.3.7
„Achs-Interface Anwender-Erweiterung “ auf Seite 36.

1.3.6.2 Programmiertemplate "ctrlX CORE Axis/Kin-Interface"

Das Programmiertemplate "ctrlX CORE Axis/Kin-Interface" deckt
die folgenden Punkte zum Achs-Interface ab:

■ PlcProg:
Aufruf des TE_AxisInterfaceMainProg() - Initialisierung und
Zyklischer Aufruf des Achs-Interface.

Achs-Interface

CXA_MotionInterface.library

2931.07.2020

TE_AxisInterfaceMainProg

Beispielcode zur Verwendung des AchsInterface. Dieser Code
muss für das eigene Projekt entsprechend angepasst werden.

■ MotionProg:
Hier wird die Methode TE_AxisInterfaceMainProg.mMotion-
Task() aufgerufen. In diesem Takt werden die Istwerte in arAxis-
Status_gb[].Data aufgefrischt. Falls die Methode nicht aufge-
rufen wird, werden die Istwerte im Takt des PlcProg aktualisiert.

■ GlobalAxisDefines:
Wird nur benötigt, wenn MOTIF_CONFIG.CONFIG_MODE auf
GLOB_VAR eingestellt ist.
Hier werden die Achsen als Konstanten vom Typ
MB_AXISIF_REF definiert und in einer Liste an TE_AxisInterfa-
ceMainProg() übergeben. Die Konstanten müssen für das
eigene Projekt entsprechend angepasst werden.

■ DemoBufferedAxisCommands:
Beispielcode mit einer Ablaufprogrammierung und dem
Absetzen gepufferter Achskommandos. Dieser Code muss für
das eigene Projekt entsprechend angepasst werden.

■ OverViewAxes:
Visualisierung zur Bedienung des Achs-Interface während der
Inbetriebnahmephase. Durch Klicken auf Felder mit "<<" kann
in weitere Bilder abgetaucht werden.

■ Version_AxisKinInterface:
Änderungshistorie und Disclaimer

1.3.6.3 Bibliothek CXA_MotionInterfaceUser.library"

Diese offene Bibliothek dient dazu die Funktionsbausteine und
Strukturen der Basisbibliothek CXA_MotionInterface zu erweitern.
Programme und Visualisierungen werden hier zur Verfügung
gestellt. Hier sind auch die globalen Variablen der Interfaces
instanziiert. Mit dieser Bibliothek sind Anpassungen / Erweite-
rungen der Interfaces durch den Anwender möglich.

Wie man die Anpassungen ausführen kann, ist hier Kapitel 1.3.7
„Achs-Interface Anwender-Erweiterung “ auf Seite 36 beschrieben

In diesem Kapitel werden die POUs des AchsInterface aus dem
Ordner "AxisInterfaceUser/POUs" beschrieben.

Das Programm TE_AxisInterfaceMainProg deckt die folgenden
Punkte ab:

■ Initialisierung des Achs-Interface:
Bei Erreichen des Modus "Running" wird das Achs-Interface mit
Hilfe des Funktionsbausteins TE_AxisInitAllAxis initialisiert. Bei
erfolgreicher Initialisierung wird der Ausgang "InitDone" gesetzt,
bei Fehlern der Ausgang "Error".

■ Zyklischer Aufruf des Achs-Interface:
Nach erfolgreicher Initialisierung wird der Funktionsbaustein
(FB) TE_AxisInterface zyklisch aufgerufen.

■ Methode TE_AxisInterfaceMainProg.mMotionTask():

Achs-Interface

CXA_MotionInterface.library

30 31.07.2020

TE_AxisInitAllAxes

Wird die Methode aus einer schnelleren MotionTask aufgerufen,
werden die Elemente in "arAxisStatus_gb[].Data" im schnell-
eren Takt aktualisiert. Der Aufruf des FB TE_AxisInterface kann
mit Hilfe der Steuer-Variable "arA-
xisCtrl_gb[].Admin.Config.MotionSync" in die schnellere Task
verschoben werden.
Wird die Methode nicht aufgerufen, erfolgen alle Aktualisie-
rungen im Takt der PLC-Task.

Tab. 22: Schnittstellenvariablen TE_AxisInterfaceMainProg

I/O-Typ Name Datentyp Kommentar

VAR_INPUT ClearError BOOL Fehler löschen wird durch eine positive
Flanke an "ClearError" gestartet

AxisCfgIdx POINTER TO
ARRAY [] OF
MB_AXISIF_REF

Konfigurationsliste für die Indizes der Achsen
(nur für Konfigurationsmodus "GLOB_VAR")

VAR_OUTPU
T

InitDone BOOL Wird gesetzt, wenn das Programm die Initiali-
sierung erfolgreich beendet hat

Error BOOL Zeigt an, dass ein Fehler im Programm aufge-
treten ist

ErrorID ERROR_CODE Kurzer Hinweis zur Fehlerursache

ErrorIdent ERROR_STRUCT Detaillierte Information zum Fehler

Fehlerbehandlung: die Fehlercodes des intern benutzten Funkti-
onsbausteines TE_AxisInitAllAxes werden durchgereicht. Das Pro-
gramm kann die folgenden Fehlercodes erzeugen:

Tab. 23: Fehlercodes des Programmes TE_AxisInterfaceMainProg

ErrorID Additional1 Additional2 Beschreibung

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C230190 Fehler im Ablauf des
Programmes

Das Programm TE_AxisInterfaceMainProg ist zum Integrieren des
Achs-Interface in ein bestehendes Programm nützlich.

Siehe auch Example_AxIfApplicationPart im Ordner "AxisInterfa-
ceUser/_Examples"

Der Funktionsbaustein TE_AxisInitAllAxes initialisiert die Achs-
Interface Strukturen.

Die Initialisierung kann gesteuert werden mit Hilfe der Parameter-
liste "MOTIF_CONFIG".

Achs-Interface

CXA_MotionInterface.library

3131.07.2020

Es gibt die folgenden Möglichkeiten:

■ AUTO = MOTIF_CONFIG.CONFIG_MODE: Es wird der Data-
layer Knoten "motion/axs/" ausgelesen und die Achsen in der
dort gefundenen Reihenfolge in die Achs-Interface Strukturen
eingeordnet.

■ GLOB_VAR = MOTIF_CONFIG.CONFIG_MODE: Die Achsen
werden anhand des globalen Arrays
"AXIF_CONFIG_INDEXES" in die Achs-Interface Strukturen
eingeordnet.

Tab. 24: Schnittstellenvariablen TE_AxisInitAllAxes

I/O-Typ Name Datentyp Kommentar

VAR_INPUT Execute BOOL Die Initialisierung wird durch eine positive
Flanke an "Execute" gestartet

AxisCfgIdx POINTER TO
ARRAY [] OF
MB_AXISIF_REF

Konfigurationsliste für die Indizes der Achsen
(nur für Konfigurationsmodus "GLOB_VAR")

VAR_OUTPU
T

Done BOOL Wird gesetzt, wenn der FB die Bearbeitung
beendet hat

Active BOOL Wird gesetzt, wenn der FB aktiv ist (nicht im
Leerlaufbetrieb)

Error BOOL Zeigt an, dass ein Fehler im Programm aufge-
treten ist

ErrorID ERROR_CODE Kurzer Hinweis zur Fehlerursache

ErrorIdent ERROR_STRUCT Detaillierte Information zum Fehler

Fehlerbehandlung: die Fehlercodes des intern benutzten Funkti-
onsbausteines MB_AxisInit werden durchgereicht. Der Funktions-
baustein kann die folgenden Fehlercodes erzeugen:

Tab. 25: Fehlercodes des Funktionsbausteines TE_AxisInitAllAxes

ErrorID Additional1 Additional2 Beschreibung

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230180 Eingang AxisIndex aus-
serhalb des gültigen
Bereiches
[MOTIF_CONFIG.MIN_
AXIS_INDEX..MOTIF_C
ONFIG.MAX_AXIS_IND
EX]

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230181 Unbekannter Konfigura-
tionsmodus
(MOTIF_CONFIG.CFG_
MODE_AXS)

Achs-Interface

CXA_MotionInterface.library

32 31.07.2020

TE_AxisInterface

ErrorID Additional1 Additional2 Beschreibung

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230182 Pointer AxisCfgIdx zur
globalen Variablen ist 0
(MOTIF_CONFIG.CFG_
MODE_AXS =
GLOB_VAR)

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230183 Achsindex ausserhalb
des gültigen Bereiches
(MOTIF_CONFIG.CFG_
MODE_AXS =
GLOB_VAR)

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230184 Achsindex doppelt
(MOTIF_CONFIG.CFG_
MODE_AXS =
GLOB_VAR)

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230185 Achsname doppelt
(MOTIF_CONFIG.CFG_
MODE_AXS =
GLOB_VAR)

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C230188 Fehler im Ablauf des
Funktionsbausteines

Das Programm TE_AxisInterfaceMainProg ruft diesen Funktions-
baustein TE_AxisInitAllAxes bereits auf.

Der Funktionsbaustein TE_AxisInterface erweitert den MB_AxisIn-
terfaceBase und bearbeitet im zyklischen Betrieb die Achs-Inter-
face Strukturen.

Zur Performanceoptimierung sind die Strukturen statt als
VAR_IN_OUT als VAR_INPUT mit REFERENCE TO ange-
schlossen. Damit reicht es einmalig die Eingänge zu initialisieren.
Dies geschieht in der Methode "mInitExtension". Beim zyklischen
Aufruf des Funktionsbausteins müssen damit die Strukturen nicht
übergeben werden.

Tab. 26: Schnittstellenvariablen TE_AxisInterface

I/O-Typ Name Datentyp Kommentar

VAR_INPUT
Steuer-
Struktur

AdminCtrlExt REFERENCE TO
TE_AXIS_ADMI-
NISTRATION

Referenz zur Steuer-Struktur Admin

StopModeCtrlExt REFERENCE TO
TE_AXIS_STOP_
MODE

Referenz zur Steuer-Struktur Stop Mode

PosModeCtrlExt REFERENCE TO
TE_AXIS_POSITI-
ONING

Referenz zur Steuer-Struktur Positioning

Achs-Interface

CXA_MotionInterface.library

3331.07.2020

TE_GetAxisInterfaceIndex

I/O-Typ Name Datentyp Kommentar

SetupMode REFERENCE TO
TE_AXIS_SETUP
_MODE

Referenz zur Steuer-Struktur SetupMode

VAR_INPUT
Status-
Struktur

AdminStatusExt REFERENCE TO
TE_AXIS_ADMIN_
STATUS

Referenz zur Status-Struktur Admin

DataStatusExt REFERENCE TO
TE_AXIS_DATA

Referenz zur Status-Struktur Data

DiagStatusExt REFERENCE TO
TE_AXIS_DIAG-
NOSIS

Referenz zur Status-Struktur Diag

SetupModeAck REFERENCE TO
TE_AXIS_SETUP
_MODE_STATUS

Referenz zur Status-Struktur SetupMode

Fehlerbehandlung: die Fehlercodes der intern benutzten Funkti-
onsbausteine werden durchgereicht. Der Funktionsbaustein kann
die folgenden Fehlercodes erzeugen:

Tab. 27: Fehlercodes des Funktionsbausteines TE_AxisInterface

ErrorID Additional1 Additional2 Beschreibung

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C2301A0 Fehler im Ablauf des
Funktionsbausteines

Das Programm TE_AxisInterfaceMainProg ruft diesen Funktions-
baustein TE_AxisInterface bereits auf.

Die Funktion TE_GetAxisInterfaceIndex liefert den Index einer
Achse in den Achs-Interface-Strukturen definiert durch den Achs-
Namen.

Tab. 28: Schnittstellenvariablen TE_GetAxisInterfaceIndex

I/O-Typ Name Datentyp Kommentar

VAR_INPUT AxisName STRING(15) Name der gesuchten Achse

Return TE_GetAxisInterfa-
ceIndex

UINT Index der gesuchten Achse

"16#FFFF" (-1) wenn die Achse nicht
gefunden wurde

Fehlerbehandlung: Die Funktion gibt "16#FFFF" (-1) zurück, wenn
die Achse nicht gefunden wurde.

Achs-Interface

CXA_MotionInterface.library

34 31.07.2020

1.3.6.4 Achs-Interface Visualisierungen
1.3.6.4.1 Überblick

Zum Achs-Interface werden Visualisierungsmasken mitgeliefert,
um ein vorgefertigtes und einfaches Interface zum Einstellen und
Ansteuern der Systemachsen zur Verfügung zu stellen.

Folgende Visualisierungen sind Programmiertemplate "ctrlX CORE
Axis/Kin-Interface" und in der Bibliothek CXA_MotionInterfa-
ceUser.library enthalten:

Beispielprojekt Visualisierungen

Tab. 29: Beispielprojekt Visualisierungen

Visualisierung Beschreibung

OverviewAxes (im Template-
Project)

Gesamtüberblick über alle definierten Achsen, einschließlich einfacher
Diagnosen, Status und Tipp-Bedienelemente

Axis_Overview Zeigt aktuelles Kommando und aktuelle Werte für Position und
Geschwindigkeit, zusammen mit Navigation zur Positions-Anzeige für die
aktuelle Achse. Referenzieren und Abschalten der Achsen sind ebenfalls
möglich

Position_mode Überwachen des Positionierbetriebs

Die folgenden globalen Variablen werden zum Steuern und für den
Zugriff auf Systeminformationen innerhalb der Visualisierungen
benutzt:

■ arAxisCtrl_gb[]
■ arAxisStatus_gb[]
■ VisuAxisNo

1.3.6.4.2 Systemübersicht-Visualisierung

Die OverviewAxes Visualisierung erlaubt es dem Anwender jede,
im Projekt konfigurierte Achse, schnell anzukoppeln. Zusätzliche
Achsen können im Offline-Betrieb zur Anzeige hinzugefügt werden.

Diese Anzeige liefert einen Gesamt-Systemstatus und ermöglicht
das Löschen von Fehlern und das Setzen von Not-Halt. Einzelne
Achs-Bedienelemente liefern den Achsnamen, Diagnosen, aktuelle
Position und Geschwindigkeit zusammen mit den Betriebsarten-
Statusanzeigen. Der SetupMode-Teil erlaubt es dem Anwender,
einzelne Achsen zu joggen und zu positionieren, sowie Achsen zu
starten und zu stoppen.

Achs-Interface

CXA_MotionInterface.library

3531.07.2020

Hinzufügen einer Achse zur System-
übersicht

Abb. 6: OverviewAxes

Das Hinzufügen einer Achse zur Systemübersicht-Anzeige erfolgt
wie das Hinzufügen einer neuen Visualisierung, durch Anwählen
des entsprechenden Elements und der Festlegung der Achs-
nummer. Nachfolgend aufgeführte Schritte stellen die Vorgehens-
weise kurz dar:

1. Mit ctrlX PLC Engineering im Offline-Betrieb Doppelklick auf
die "OverviewAllAxes" Visualisierung.

2. Wählen Sie im Fenster Visualisierungswerkzeuge die Schalt-
fläche „Frame“ an und erzeugen Sie einen Grundriss unter-
halb der letzten Achstabellenzeile, der der Zeilenhöhe und
Zeilenbreite entspricht.

3. Mit rechter Maustaste auf den Frame klicken und "Frameaus-
wahl" aktivieren. Wählen Sie das OverviewOneAxis-Element
aus dem Visualisierungsauswahlfenster im Ordner
CXA_MotionInterfaceUser/AxisInterfaceUser/Visualizations/
SystemOverviewaus.

 Eine komplett neue Systemübersicht Achszeile erscheint.

4. Nach einem Klick in der neuen Visualisierung tragen Sie im
"Eigenschaften"-Fenster als Wert fürm_Input_AxisIndex den
Index der definierten Achse ein.

5. Das neue Achs-Interface für die Systemübersicht kann nun in
der Grösse angepasst und positioniert werden.

6. Übersetzen Sie das SPS-Projekt neu und gehen Sie Online.

Obige Schritte müssen für alle, zusätzlich zum Projekt hinzuge-
fügten Achsen wiederholt werden.

Achs-Interface

CXA_MotionInterface.library

36 31.07.2020

Systemübersicht Navigation Eine Einzelachs-Übersichtanzeige ist durch Klicken auf die Schalt-
fläche mit zwei Pfeilen "<<", die sich unter der Details-Spalte in der
Achstabelle befindet, erreichbar. Aus der Achsübersichtanzeige ist
die Navigation zur Positions-Betriebsartenanzeige möglich.

Abb. 7: Systemübersicht Navigation

1.3.7 Achs-Interface Anwender-Erweiterung
1.3.7.1 Überblick

Die arAxisCtrl_gb[] und arAxisStatus_gb[] Strukturen können
durch den Anwender erweitert werden, um das Achs-Interface an
spezielle Applikationen anzupassen.

Achs-Interface

CXA_MotionInterface.library

3731.07.2020

Empfohlene Vorgehensweise

Arbeitsablauf

Die arAxisCtrl_gb[]- und arAxisStatus_gb[]-Strukturen des
Anwender-Interface sind als Basistypen mit dem Präfix "MB_" in
der geschlossenen Bibliothek CXA_MotionInterface.compiled-lib-
rary definiert und daher für den Anwender nicht zugänglich.

Um Erweiterungen zu ermöglichen, ist es nötig, eigene Strukturen
zu definieren, die die Strukturen "MB_" erweitern. Die erweiterteten
Strukturen sind durch den Präfix "TE_" gekennzeichnet und
befinden sich in der offenen Bibliothek CXA_MotionInterfa-
ceUser.library.

Um die Anwendererweiterungen auszuführen, ist es notwendig die
Bibliothek CXA_MotionInterfaceUser.library anzupassen. Zur
Nachvollziehbarkeit ist es notwendig und dringend empfohlen der
angepassten Bibliothek einen neuen Namen zu geben, z.B.
CXA_MotionInterfaceMyCompany.library. Im Folgenden wird als
Bibliotheksname CXA_MotionInterfaceMyCompany.library ver-
wendet.

1. Im Bibliotheksverwalter die CXA_MotionInterfaceUser.library
selektieren. Rechte Maustaste -> "Bibliothek exportieren"
anwählen. Speicherort wählen und einen neuen Namen z.B.
CXA_MotionInterfaceMyCompany.library vergeben. Nacht-
rägliches Umbenennen ist ebenfalls möglich.

2. Mit einer zweiten Instanz von ctrlX PLC Engineering die Bibli-
othek CXA_MotionInterfaceMyCompany.library öffnen. In den
Projektinformationen das Feld "freigegeben" abwählen, die
weiteren Felder anpassen und in den Eigenschaften den
Schlüssel "Placeholder" löschen.

3. Im Anwendungsprogramm (erste Instanz von ctrlX PLC Engi-
neering) im Bibliotheksverwalter die CXA_MotionInterfa-
ceUser.library entfernen und dafür CXA_MotionInterfaceMy-
Company.library einbinden.

4. Anpassungen in der Bibliothek vornehmen. Am Ende aus-
führen: "Datei"->"Projekt speichern und ins Bibiliotheksrepo-
sitory installieren".

5. Im Anwendungsprogramm (erste Instanz von ctrlX PLC Engi-
neering) die Anpassungen testen. Debuggen im Code aus
der Bibliothek ist auch möglich.

6. Schritte 4. und 5. wiederholen bis die Funktion fehlerfrei ist.

Sobald ein Update der CXA_MotionInterfaceUser.library zur Verfü-
gung steht, können Änderungen mit "Projekt"->"Vergleichen" in die
CXA_MotionInterfaceMyCompany.library übernommen werden.

Die CXA_MotionInterfaceUser.library verwendet Fehlercodes mit
"CXA_TABLE". Diese sind in der Produktdokumentation zu finden.
Wenn in den Anwendererweiterungen weitere Fehlercodes benö-
tigt werden, können diese frei definiert werden, müssen aber mit
"USER1_TABLE..USER10_TABLE" gemeldet werden.

Achs-Interface

CXA_MotionInterface.library

38 31.07.2020

ML_AxsGetIpoValues

Hinweise zur Implementation von
Anwendererweiterungen

Dieser Abschnitt zeigt, wie das Achs-Interface durch Hinzufügen
der ML_AxsGetIpoValues-Funktionalität erweitert wird. Die Funk-
tion ML_AxsGetIpoValues ermöglicht es, die interpolierten Werte
einer Achse abzufragen. Die Istwerte sind bereits in der Basis-
Struktur als z.B. "ActualPosition" vorhanden.

Die folgenden neuen Ein- und Ausgänge werden definiert:

■ arAxisCtrl_gb[].Admin.EnableReadIpo
■ arAxisStatus_gb[].Data.IpoPosition
■ arAxisStatus_gb[].Data.IpoVelocity

Im Programm-Template "ctrlX CORE Axis/Kin-Interface" sind fol-
gende anwenderspezifische Erweiterungen implementiert:

■ Jog-Funktionalität als "SetupMode"
■ "RetriggerOpMode" um eine Betriebsart erneut anzusteuern

z.B. MoveRelative mit der gleichen Distanz
■ Eine benutzerdefinierte Betriebsart "MODE_XX_USER_0"

Im Folgenden wird davon ausgegangen, dass die im Programm-
Template "ctrlX CORE Axis/Kin-Interface" bereits vorbereitete
Struktur verwendet wird. Es wird nur beschrieben, welche Ände-
rungen in den dort vorgegebenen POUs notwendig sind.

Die Anwendererweiterungen wurden mit Hilfe der objektorientierten
Erweiterungen von ctrlX PLC Engineering implementiert. Dabei
sind einige Besonderheiten zu beachten:

■ Der Funktionsbaustein (FB) TE_AxisInterface ist vom Basis-FB
MB_AxisInterfaceBase abgeleitet. Über das Schlüsselwort
"SUPER" kann der Basis-FB bzw. Methoden/Aktionen des
Basis-FB aufgerufen werden. Zum Beispiel wird an diversen
Stellen über SUPER^.mSetError(...); die Methode mSetError
des FB MB_AxisInterfaceBase aufgerufen um Fehler in das
Diagnosesystem einzutragen

■ Innerhalb des FB TE_AxisInterface kann auf die Daten von arA-
xisCtrl_gb über die Eingänge AdminCtrlExt, PosModeCtrlExt
usw. bzw. auf arAxisStatus_gb über AdminStatusExt, DiagSta-
tusExt usw. zugegriffen werden.
Die Eingänge AdminCtrl (ohne Ext) usw. gehören zum Basis-FB
und sollten nicht genutzt werden

■ Die Eingänge des FB TE_AxisInterface sind als "REFERENCE
TO" definiert. In der Methode mInitExtension werden die Refe-
renzen einmalig initialisiert und müssen dann beim zyklischen
Aufruf des FB nicht mehr übergeben werden

Achs-Interface

CXA_MotionInterface.library

3931.07.2020

■ Wenn die Basisstrukturen TE_AXIS_CONTROL_TYPE01 und
TE_AXIS_STATUS_TYPE01 mit zusätzlichen Unterstrukturen
erweitert werden sollen, sind folgende zusätzliche Schritte zu
der weiter unten beschriebenen Vorgehensweise notwendig
(siehe SetupMode und SetupModeAck als Beispiele):
– Neue Elemente in TE_AXIS_CONTROL_TYPE01 bzw.

TE_AXIS_STATUS_TYPE01 eintragen
– Am FB TE_AxisInterface die zusätzlichen Eingänge als

REFERENCE TO hinzufügen
– In der Methode mInitExtension des FB TE_AxisInterface die

Referenzen initialisieren

1.3.7.2 Erweitern der arAxisCtrl_gb[]-Struktur

Um die zusätzliche Funktionalität der arAxisCtrl_gb[] Struktur hin-
zuzufügen, muss der Anwender eine neue Struktur anlegen, die
Unterstrukturen von den bereits existierenden Struktur ableiten und
dann die neuen Elemente hinzufügen. Im Programm-Template
"ctrlX CORE Axis/Kin-Interface" ist eine Struktur TE_AXIS_CON-
TROL_TYPE01 und die Unterstrukturen TE_AXIS_ADMINISTRA-
TION usw. bereits vorbereitet.

Nehmen Sie die folgenden Schritte vor, um die Funktionalität der
TE_AXIS_ADMINISTRATION Struktur zu erweitern:

1. Mit ctrlX PLC Engineering die Bibliothek CXA_MotionInterfa-
ceMyCompany.library öffnen

2. Öffnen Sie die Struktur TE_AXIS_ADMINISTRATION, Ordner
AxisInterfaceUser/DUTs/Control.

3. Deklarieren Sie die folgende Variable

■ EnableReadIpo: BOOL:=TRUE;

1.3.7.3 Erweitern der arAxisStatus_gb[] Struktur

Erweitern Sie die arAxisStatus_gb[]-Struktur entsprechend den
Schritten in "Erweitern der arAxisCtrl_gb[] Struktur". Die folgenden
Schritte stellen die Vorgehensweise kurz dar:

1. Öffnen Sie die Struktur TE_AXIS_DATA, Ordner AxisInterfa-
ceUser/DUTs/Status.

2. Deklarieren Sie die folgenden Variablen

■ IpoPosition: LREAL;
■ IpoVelocity: LREAL;

1.3.7.4 Erweitern des Funktionsbausteines

Der letzte Schritt im Ablauf der Anwender-Erweiterung ist, den
Funktionsbaustein so zu erweitern, dass die neuen Elemente
benutzt werden können.

Achs-Interface

CXA_MotionInterface.library

40 31.07.2020

1. Deklarieren Sie im FB TE_AxisInterface die folgende Vari-
able:

stAxsGetIpoValuesData: ML_AxsGetIpoValues-
Data;

2. Im FB TE_AxisInterface könnte die Funktion so ausprogram-
miert werden:

IF AdminCtrlExt.EnableReadIpo = TRUE THEN
stAxsGetIpoValuesData.In.AxisName :=
AdminCtrlExt.Config.Axis.AxisName;
ML_AxsGetIpoValues(stAxsGetIpoValuesData); //
call motion function
 DataStatusExt.IpoPosition := stAxsGetIpoVa-
luesData.Out.Position;
DataStatusExt.IpoVelocity := stAxsGetIpoValu-
esData.Out.Velocity;
END_IF

3. Übersetzen Sie das Projekt neu und überprüfen Sie es auf
Programmierfehler.

4. Laden Sie das Projekt in die Steuerung.

Die neuen Eingangs- und Ausgangs-Elemente sind nun ein Teil der
Achs-Interface-Struktur und können über die Variablen in
Global_AxisInterface betrachtet werden.

Achs-Interface

CXA_MotionInterface.library

4131.07.2020

Abb. 8: arAxisCtrl_gb und arAxisStatus_gb Strukturen mit Anwender-Erweiterungen

1.3.7.5 Anwendung der benutzerdefinierten Betriebsarten

Bei benutzerdefinierbaren Betriebsarten werden die Motion-Kom-
mandos in der anwenderspezifischen Erweiterung in der Bibliothek
CXA_MotionInterfaceMyCompany.library implementiert.

Die folgenden Schritte zeigen an einem Beispiel wie Sie die benut-
zerdefinierten Betriebsarten nutzen können.

Achs-Interface

CXA_MotionInterface.library

42 31.07.2020

1. Fügen Sie eine neue Datenstruktur für die Sollwerte der
benutzerdefinierten Betriebsart (Name z. B.
TE_AXIS_USERMODE1) unterhalb des Ordners AxisInter-
face/Type/Control hinzu.

2. Definieren Sie die Elemente dieser Datenstruktur (z. B. Vel:
REAL, Acc:REAL, DEC: REAL).

3. Fügen Sie am Ende der Datenstruktur TE_AXIS_CON-
TROL_TYPE01 oder TE_AXIS_CONTROL_TYPE02 ein
neues Element vom Typ der o.g. Datenstruktur ein (Beispiel:
UserMode1: TE_AXIS_USERMODE1;).

4. Fügen Sie am Ende der VAR_INPUT Deklaration im FB
TE_AxisInterface einen neuen Eingang ein (Beispiel: MyMo-
deUser1Ext : REFERENCE TO TE_AXIS_USERMODE1;).

5. Initialisieren Sie die Referenz des neu angelegten Einganges
in der Methode mInitExtension des TE_AxisInterface (Bei-
spiel: MyModeUser1Ext REF= arAxisCtrl_gb[index].User-
Mode1;).

6. Programmieren Sie das gewünschte Motion-Kommando in
der Methode mUserModes. Die Methode mUserModes des
TE_AxisInterface überschreibt die Methode des Basisbaus-
teines MB_AxisInterfaceBase und wird von diesem aufge-
rufen.

7. Übersetzen Sie das Projekt neu und überprüfen Sie es auf
Programmierfehler.

8. Laden Sie das Projekt in die Steuerung und starten Sie die
SPS.

9. Jetzt können Sie die neue benutzdefinierte Betriebsart
anwählen und das Motion-Kommando wird mit den überge-
benen Sollwerten wirksam.

1.3.8 HowTo: Typische Anwenderaktivitäten
1.3.8.1 Zugriff auf Achsdaten

Die folgenden Daten sind verfügbar (Name = jeweiliger Achs-
name):

■ arAxisCtrl_gb[Name.AxisNo] => Steuerstruktur des Achs-Inter-
face

■ arAxisStatus_gb[Name.AxisNo] => Statusstruktur des Achs-
Interface

■ arAxisStatus_gb[Name.AxisNo].Data => Istwerte und Statusin-
formationen

■

Azyklische Zugriffe auf Achsdaten sind über den ctrlX DataLayer
mit den Funktionsbausteinen DL_ReadNode und DL_WriteNode
möglich.

Achs-Interface

CXA_MotionInterface.library

4331.07.2020

1.3.8.2 Anpassung der maximalen Achsanzahl

Die Achsstrukturen können an die tatsächlich vorhandene Achsan-
zahl angepasst werden.

Die Bibliothek CXA_MotionInterfaceUser erlaubt Anpassungen
über die Bibliotheksparameter "MOTIF_CONFIG".

Mit den Konstanten "MIN_AXIS_INDEX" und "MAX_AXIS_INDEX"
kann die Grösse der Strukturen passend zur Anwendung gewählt
werden.

Wird das Kinematik-Interface verwendet, darf die Konstante
"MAX_AXIS_INDEX" nicht grösser als "Global_MB_KinInterface-
Vars.MB_KINIF_MAX_AXIS_INDEX" gewählt werden. Es kommt
ansonsten zu einem Initialisierungsfehler beim Start des SPS-Pro-
grammes.

1.3.8.3 Anpassung der Zuordnung Achsname<>AchsIndex

Das AchsInterface arbeitet mit einem AchsIndex zur Adressierung
in den Achsstrukturen. Die Motion-Firmware arbeitet mit dem
Achsnamen. Die Zuordnung Achsname<>AchsIndex kann mit ver-
schiedenen Methoden erfolgen.

Die Bibliothek CXA_MotionInterfaceUser erlaubt eine Auswahl der
Methode über die Bibliotheksparameter "MOTIF_CONFIG".

Zuordnung Achsname<>AchsIndex in
MOTIF_CONFIG.CFG_MODE_AXS

■ AUTO: Auslesen des DataLayer Knotens "motion/axs" und
Zuweisung des AchsIndex in der hier vorgefundenen Reihen-
folge

■ GLOB_VAR: in der Application wird eine Liste von
"MB_AXISIF_REF" definiert und an das Programm "TE_AxisIn-
terfaceMainProg" übergeben. Siehe "GlobalAxisDefines" im
Programm-Template "ctrlX CORE Axis/Kin-Interface".

1.3.8.4 Achse hinzufügen

Eine Achse kann in der Bedienoberfläche im Bereich Motion ange-
legt werden oder auch z.B. aus dem SPS-Programm erzeugt
werden.

Für eine hinzugefügte Achse muss ggf. eine Initialisierung
bestimmter Strukturelemente des Achs-Interface vorgenommen
werden. Dies geschieht bei Verwendung des Programm-Template
"ctrlX CORE Axis/Kin-Interface" automatisch beim Erreichen des
Zustandes "Running". Die Zuordnung Achsname<>AchsIndex
muss ergänzt werden, wenn MOTIF_CONFIG.CFG_MODE_AXS =
GLOB_VAR konfiguriert ist. Siehe auch oben weitere Informati-
onen auf Seite 43.

Achs-Interface

CXA_MotionInterface.library

44 31.07.2020

1.3.8.5 Achse entfernen/umbenennen

Eine vorhandene Achse kann in der Bedienoberfläche im Bereich
Motion oder über diverse Schnittstellen gelöscht bzw. umbenannt
werden.

Wird eine Achse umbenannt, muss der Zugriff über die Control- u.
Statusstrukturen "arAxisCtrl_gb[geänderterAchsname.AxisNo]"
und "arAxisStatus_gb[geänderterAchsname.AxisNo]" innerhalb
des SPS-Programmes angepasst werden.

Die Zuordnung Achsname<>AchsIndex muss angepasst werden,
wenn MOTIF_CONFIG.CFG_MODE_AXS = GLOB_VAR konfigu-
riert ist. Siehe auch oben weitere Informationen auf Seite 43.

1.3.8.6 Achs-Interface Erweiterungen

Das Achs-Interface erlaubt fast beliebige Erweiterungen der Achs-
Interface-Strukturen. Es können zusätzliche Unterstrukturen einge-
fügt und auch die vorhandenen Unterstrukturen erweitert werden.

Die folgenden Strukturelemente sind als Anwendererweiterungen
in der AxisCtrl-Struktur beispielhaft programmiert:

■ Admin: Erweiterung der vorhandenen Unterstruktur in der
AxisCtrl-Struktur
– ReTriggerOpMode: Neustart der eingestellten Betriebsart, z.

B. MoveRelative mit der gleichen Distance starten
■ SetupMode: zusätzliche Unterstruktur in der AxisCtrl-Struktur

– Enable: Freigabe Einrichtbetrieb
– JogPlus: Tippen +
– JogMinus: Tippen -
– Vel: Tippgeschwindigkeit
– DynValues: Tipp(brems)beschleunigung und Ruck.
– JogIncr: TRUE -> inkrementelles Tippen. Eine positive

Flanke an JogPlus oder JogMinus vertippt eine Schrittweite
– StepWidth: Schrittweite für das inkrementelle Tippen

Die folgenden Strukturelemente sind als Anwendererweiterungen
in der AxisStatus-Struktur beispielhaft programmiert:

■ SetupMode: zusätzliche Unterstruktur in der AxisStatus-Struktur
– EnableAck: Einrichtbetrieb ist aktiv

Der Code zu diesen Erweiterungen ist in den Aktionen des Baust-
eins TE_AxisInterface() im Ordner "AxisInterfaceUser/POUS" zu
finden. Die dazugehörigen Strukturen sind in den Ordnern "AxisIn-
terfaceUser/DUTs/Control" und "AxisInterfaceUser/DUTs/Status" zu
finden.

Es können eigene Erweiterungen hinzugefügt werden (siehe dazu
 , Seite).

Kinematik-Interface

CXA_MotionInterface.library

4531.07.2020

1.4 Kinematik-Interface
1.4.1 Einführung und Übersicht

Das Kinematik-Interface bündelt und erweitert PLCopen-Bewe-
gungsfunktionsbausteine und stellt ein einfach zu bedienendes
Interface für die Kinematikfunktionalität zur Verfügung.

Weniger Code und leistungsfähigere Kommandos beschleunigen
die Programmentwicklung von Applikationen.

Das Kinematik-Interface enthält Steuersignale und Parameter für
die verschiedenen Betriebsarten der Kinematiken.

Tab. 30: Programmorganisationseinheiten des Kinematik-Interface in der Bibliothek CXA_MotionInterface

Anwendungsgebiet (Ordner in der Bibliothek CXA_MotionInterface)

POUs Beschreibung

KinInterface/POUs

  , Seite Wird zur Initialisierung des Kinematik-Interfaces für
jede Kinematik benutzt. Der Funktionsbaustein
muss nur einmal beim Programmstart bzw. bei
jeder Phasenumschaltung vom Parametriermodus
in den Betriebsmodus aufgerufen werden

  , Seite Wird zur Konfiguration des Kinematik-Interfaces für
jede Kinematik benutzt. Der Funktionsbaustein
muss zyklisch (im Motion-Takt oder langsamer als
der Motion-Takt) aufgerufen werden, solange man
sich im Betriebsmodus befindet

KinInterface/DUTs

Informationen zu den Datenstrukturen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
onInterface im Ordner "KinInterface/DUTs".

KinInterface/GlobalVariables

Informationen zu den globalen Variablen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
onInterface im Ordner "KinInterface/GlobalVaria-
bles".

Kinematik-Interface

CXA_MotionInterface.library

46 31.07.2020

Kinematik-Interface wird als Programmiertemplate oder als stand-
alone-Interface für die Kinematikfunktionalität zur Verfügung
gestellt.

Wenn es mit dem Programmiertemplate "ctrlX CORE Axis-/Kin-
Interface" benutzt wird, muss sich der Anwender nicht mit Instanz-
Aufrufen der Funktionsbausteine innerhalb des Projektes
befassen. Diese Funktionalität ist komplett in das Template integ-
riert und der Anwender muss nur ein paar Zeilen Code schreiben.

Wird hingegen das Kinematik-Interface als eigenständige Funktio-
nalität benutzt, erfordert dies das Anlegen von Instanzen von
beiden Funktionsbausteinen für jede Kinematik durch den
Anwender.

Das Kinematik-Interface nutzt intern das Achs-Interface. Es ist also
zwingend erforderlich auch das Achs-Interface aufzurufen.

Tab. 31: Programmorganisationseinheiten des Achs-Interface in der Bibliothek CXA_MotionInterfaceUser

Anwendungsgebiet (Ordner in der Bibliothek CXA_MotionInterfaceUser)

POUs Beschreibung

KinInterfaceUser/POUs

TE_KinematicsInitAllKinematics Initialisierung des Kinematik-Interfaces für alle
Kinematiken. Ruft intern den  , Seite für jede
Kinematik auf

TE_KinematicsInterface erweitert  , Seite Hier kann das Kinematik-Interface für eine einzelne
Kinematik durch den Anwender erweitert werden

 Kapitel 1.4.7 „Kinematik-Interface Anwender-
Erweiterung “ auf Seite 75. Der Funktionsbaustein
muss zyklisch (im Motion-Takt oder langsamer als
der Motion-Takt) aufgerufen werden, solange man
sich im Betriebsmodus befindet

TE_KinInterfaceMainProg Das Hauptprogramm führt bei Erreichen des Modus
"Running" die Initialisierung aus und nach erfolgrei-
cher Initialisierung wird der TE_KinematicsInterface
für alle Kinematiken aufgerufen

Weitere Informationen siehe Online-Dokumentation
in der Bibliothek CXA_MotionInterfaceUser im
Ordner "KinInterfaceUser/POUs".

KinInterfaceUser/DUTs

Informationen zu den Datenstrukturen siehe
Online-Dokumentation in der Bibliothek CXA_Moti-
onInterfaceUser im Ordner "KinInterfaceUser/
DUTs".

KinInterfaceUser/GlobalVariables

Kinematik-Interface

CXA_MotionInterface.library

4731.07.2020

Projektierungshinweis/Laufzeitbedarf

Global_Kinematics_Interface Hier ist das eigentliche Kinematik-Interface mit den
Arrays arKinCtrl_gb und arKinStatus_gb zu finden.
Die weiteren Variablen werden intern bzw. von den
Visualisierungen genutzt.

Siehe auch Kapitel 1.4.4 „Kinematik-Interface -
Globale Variablen “ auf Seite 66

KinInterfaceUser/Visualizations

 Kapitel 1.4.6.4 „Kinematik-Interface Visualisie-
rungen “ auf Seite 73

Inbetriebnahmevisualisierungen, z.B. zum Ver-
tippen der Achsen

KinInterfaceUser/_Examples

PROGRAM Example_KinIfApplicationPart Beispielcode zur Anwendung des Kinematik-Inter-
faces. Im Programm-Template "ctrlX CORE Axis-/
Kin-Interface" ist dieser Beispielcode auch ent-
halten.

Für jede Kinematik des Kinematik-Interface wird der Kinematik-
Interface-Funktionsbaustein aufgerufen. Dieser Aufruf benötigt
Laufzeit der SPS. Diese Laufzeit variiert je nach Kinematiktyp und
Kinematikbetriebsart. Zusätzlich muss für jede Achse der Achs-
Interface-Funktionsbaustein aufgerufen werden.

Abb. 9: Kin-Interface Datenstruktur des Interface

Tab. 32: Zuordnung Anwender-Interface zur Kinematik-Interface-Datenstruktur:

Anwender-Inter-
face

Typ Beschreibung

arKinCtrl[]_gb TE_KINEMATICS_CON-
TROL_TYPE01

Steuerungsstruktur inklusive Sollwerte und Vari-
ablen zum Aktivieren der Betriebsarten

arKinStatus[]_gb TE_KINEMA-
TICS_STATUS_TYPE01

Statusstruktur inklusive Diagnoseinfo, Quittungen
für die Betriebsarten, Istwerten und Statusinforma-
tion der App rexroth-motion.

Kinematik-Interface

CXA_MotionInterface.library

48 31.07.2020

EnableCyclicScanning

Abb. 10: Überblick über die Datenstrukturen des Kinematik-Interface

Benutzen Sie die GroupNo der MB_AXESGROUPIF_REF-Struktur
als Index für das Feld, z. B. arKinCtrl_gb[Mover.GroupNo].Admin.
usw.

Die interne Handhabung einiger Sollwerte kann durch das
arKinCtrl_gb[].Admin.Config.EnableCyclicScanning Element
gesteuert werden.

Wird "EnableCyclicScanning" auf TRUE gesetzt, werden einige
Sollwerte der arKinCtrl_gb[]-Struktur zyklisch gescannt und sofort
wirksam, wenn sich ein Wert ändert.

Kinematik-Interface

CXA_MotionInterface.library

4931.07.2020

Abb. 11: Zyklisch gescannte Elemente von arKinCtrl_gb[] sind hervorgehoben

− Bei der Aktivierung einer Betriebsart (.Admin._OpMode)
werden, unabhängig von der Einstellung des "EnableCyclicS-
canning"-Eingangs, alle Eingangsdaten gelesen

− Wenn "EnableCyclicScanning" = TRUE, werden alle Eingangs-
daten, die grün hervorgehoben sind, zyklisch gelesen. Das
bedeutet, dass nach Aktivierung einer Betriebsart jede Ände-
rung der Werte sofort gelesen wird

− Im Gegensatz dazu werden alle Eingangsdaten, die blau her-
vorgehoben sind, nicht zyklisch gescannt. Das bedeutet, dass
die Werte nur gelesen werden, wenn eine Betriebsart aktiviert
wird

− Die Datenkonsistenz wird durch "EnableCyclicScanning"
(FALSE→Daten schreiben→TRUE) erreicht

Für Inbetriebnahmezwecke stehen verschiedene IndraLogic-Visua-
lisierungen, basierend auf den Strukturelementen, die in diesem
Abschnitt beschrieben werden, in der Bibliothek CXA_Motioninter-
faceUser zur Verfügung.

Kinematik-Interface

CXA_MotionInterface.library

50 31.07.2020

Was ist neu bzw. geändert gegenüber
der Version für MLC/MLD

■ Es wurden Teile des ereignisgesteuerten Kinematik-Interface
(Funktionsbaustein MB_KinematicsInterfaceType12) über-
nommen. Die Strukturelemente sind zum Teil als Properties
implementiert. Die Unterstrukturen sind dann als Funktionsbau-
steine anstatt Strukturen implementiert um Properties nutzen zu
können. In einer Struktur ist eine Methode
arKinCtrl_gb[].Admin.mTriggerMoveCmd() implementiert.

■ Die Betriebsartenanwahl arKinCtrl_gb[].Admin._OpMode ist
nicht mehr als "UNION" implementiert sondern als Properties
umgesetzt. Bei der Ansteuerung über Bits (_OpModeBits) ist
damit keine Mehrfachanwahl mehr möglich.

■ Selten verwendete Elemente von arKinCtrl_gb[].Admin wurden
in arKinCtrl_gb[].Admin.Config verschoben (siehe Tabelle
unten).

■ Werte vom Typ REAL werden jetzt generell als LREAL in den
Strukturen definiert.

■ Es gibt keine KinData[] Struktur. Die aktuellen Istwerte und
einige Statusbits sind in arKinStatus_gb[].Data zu finden.

Tab. 33: Folgende Code-Änderungen sind bei einer Portierung von MLC/MLD mindestens notwendig
(Suchen/Ersetzen).

Code MLC/MLD Ersetzen durch

Kontrollstruktur arKinCtrl_gb[]

_OpMode.en _OpMode

ModeCoordInterrupted ModeCoordInterrupt

ModeCoordStopping ModeCoordStandby

_OpMode.b _OpModeBits

MODE_COORD_INTERRUPTED MODE_COORD_INTERRUPT

MODE_COORD_STOPPING MODE_COORD_STANDBY

Admin.Group Admin.Config.Group

Admin.DiagNbrRefreshTime Admin.Config.DiagNbrRefreshTime

Admin.EnableCyclicScanning Admin.Config.EnableCyclicScanning

CoordMode.Velocity CoordMode.DynValues.Velocity

CoordMode.Acceleration CoordMode.DynValues.Acceleration

CoordMode.Deceleration CoordMode.DynValues.Deceleration

CoordMode.Jerk CoordMode.DynValues.JerkAcc

CoordMode.DynValues.JerkDec

CoordMode.BlendingRadius CoordMode.BlendingStartD1

CoordMode.BlendingEndD2

SetupMode.Velocity[] SetupMode.DynValues.Velocity

Kinematik-Interface

CXA_MotionInterface.library

5131.07.2020

Kurzbeschreibung

Code MLC/MLD Ersetzen durch

SetupMode.Acceleration[] SetupMode.DynValues.Acceleration

SetupMode.Deceleration[] SetupMode.DynValues.Deceleration

SetupMode.Jerk[] SetupMode.DynValues.JerkAcc

SetupMode.DynValues.JerkDec

SetupMode.Distance[] SetupMode.Increment

Kontrollstruktur arKinStatus_gb[]

Admin.MODE_COORD_UNGROUPED Admin._OpModeAck-
Bits.MODE_COORD_UNGROUPED

Admin.MODE_COORD_CONTINUE Admin._OpModeAckBits.MODE_COORD_CON-
TINUE

Admin.MODE_COORD_INTERRUPTED Admin._OpModeAckBits.MODE_COORD_INTER-
RUPT

Admin.MODE_COORD_EXTERNAL_FB Admin._OpModeAck-
Bits.MODE_COORD_EXTERNAL_FB

Admin.MODE_COORD_POS_LIN_ABS Admin._OpModeAck-
Bits.MODE_COORD_POS_LIN_ABS

Admin.MODE_COORD_POS_LIN_REL Admin._OpModeAck-
Bits.MODE_COORD_POS_LIN_REL

Admin.MODE_COORD_STOPPING Admin._OpModeAck-
Bits.MODE_COORD_STANDBY

Diese Liste der Code-Änderungen ist nicht vollständig. Bei der Por-
tierung ist eine generelle Überprüfung des Programm-Codes not-
wendig.

1.4.2 Kinematik-Interface - Funktionsbausteine
1.4.2.1 MB_KinematicsInit

Der Funktionsbaustein MB_KinematicsInit wird zur Initialisierung
des Kinematik-Interfaces für jede Kinematik benutzt.

Der Funktionsbaustein muss nur einmal beim Programmstart oder
bei jeder Modusumschaltung von "Configuration" in "Running" auf-
gerufen werden. In der Vorlage "ctrlX CORE Axis/Kin-Interface" ist
dies bereits implementiert.

Kinematik-Interface

CXA_MotionInterface.library

52 31.07.2020

Schnittstellenbeschreibung

Abb. 12: Funktionsbaustein MB_KinematicsInit

Tab. 34: Schnittstellenvariablen MB_KinematicsInit

I/O-Typ Name Datentyp Kommentar

VAR_INPUT Execute BOOL Start der Initialisierung durch positive Flanke

KinName STRING(15) Name der zu initialisierenden Kinematik

KinIndex UINT Index in den Kinematik-Interface Strukturen

VAR_OUTPU
T

Done BOOL Wird gesetzt, wenn der FB die Bearbeitung
beendet hat

Active BOOL Wird gesetzt, wenn der FB aktiv ist (nicht im
Leerlaufbetrieb)

Error BOOL Zeigt an, dass ein Fehler in der FB-Instanz
aufgetreten ist

ErrorID ERROR_CODE Kurzer Hinweis zur Fehlerursache

ErrorIdent ERROR_STRUCT Detaillierte Information zum Fehler

VAR_IN_OU
T

AdminCtrl MB_KINEMA-
TICS_ADMINIST-
RATION

Verwaltung der Kinematik

arKinCtrl_gb[].Admin

AdminStatus MB_KINEMA-
TICS_ADMIN_STA
TUS

Status Verwaltung der Kinematik

arKinStatus_gb[].Admin

DiagStatus MB_KINEMA-
TICS_DIAGNOSIS

Diagnoseinformationen der Kinematik

arKinStatus_gb[].Diag

Kinematik-Interface

CXA_MotionInterface.library

5331.07.2020

Funktionsbeschreibung

Fehlerbehandlung

Es ist nicht möglich anstelle der einzelnen Strukturelemente
"AdminCtrl", "AdminStatus", etc. die kompletten Strukturen
"MB_Kinematics_Control_Type01" und "MB_Kinema-
tics_Status_Type01" dem Funktionsbaustein zu übergeben.

Dies wurde vorgenommen, um der Anwender-Applikation spezielle
Erweiterungen zum bestehenden Code zu ermöglichen.

Deshalb werden die benötigten Elemente von TE_KINEMA-
TICS_CONTROL_TYPE01 und TE_KINEMA-
TICS_STATUS_TYPE01 als separate Eingänge übergeben.

Tab. 35: Der Funktionsbaustein MB_KinematicsInit initialisiert die
folgenden Strukturelemente mit Standardwerten:

Administration Control

AdminCtrl._OpMode ModeCoordAB

AdminCtrl.Config.Group.Group
No

KinIndex

AdminCtrl.Config.Group.Kin-
Name

KinName

Administration Status

AdminStatus.Active TRUE für aktive Kinematik

AdminStatus.Name KinName

Die Fehlercodes der intern benutzten Funktionsbausteine
DL_ReadNode und DL_BrowseNode zum Lesen von Datalayer
Knoten werden durchgereicht. Der Funktionsbaustein kann die fol-
genden Fehlercodes erzeugen:

Tab. 36: Fehlercodes MB_KinematicsInit

ErrorID Additional1 Additional2 Beschreibung

INPUT_RANGE_ERROR 16#0A0F010
7

16#0C23014
0

Stringlänge KinName ausser-
halb des gültigen Bereiches
[1..15]

STATE_MACHINE_ERROR 16#0A0F010
7

16#0C23014
1

Fehler im Ablauf des Funkti-
onsbaustein

INPUT_RANGE_ERROR 16#0A0F010
7

16#0C23014
2

Zu viele Achsen für diese
Kinematik konfiguriert

INPUT_RANGE_ERROR 16#0A0F010
7

16#0C23014
3

KinIndex ausserhalb des gül-
tigen Bereiches
[1..MB_KINIF_MAX_KIN_NU
MBER]

Kinematik-Interface

CXA_MotionInterface.library

54 31.07.2020

Kurzbeschreibung

Schnittstellenbeschreibung

ErrorID Additional1 Additional2 Beschreibung

INPUT_RANGE_ERROR 16#0A0F010
7

16#0C23014
4

Ungültiger Pointer arpAdmi-
nAxisCtrl_gb für mindestens
eine Achse

1.4.2.2 MB_KinematicsInterfaceBase

Der Funktionsbaustein MB_KinematicsInterfaceBase wird zur Kon-
figuration des Kinematik-Interfaces für jede Kinematik benutzt.

Dieser Funktionsbaustein muss zyklisch (im Motion-Takt oder lang-
samer als der Motion-Takt) aufgerufen werden solange man sich
im Modus "Running" befindet. In der Vorlage "ctrlX CORE Axis/Kin-
Interface" ist dies bereits implementiert.

Abb. 13: Funktionsbaustein MB_KinematicsInterfaceBase

Tab. 37: Schnittstellenvariablen MB_KinematicsInterfaceBase

I/O-Typ Name Datentyp Kommentar

VAR_INP
UT

AdminCtrl REFERENCE TO
MB_KINEMATICS_ADMI-
NISTRATION

Verwaltung der Kinematik

arKinCtrl_gb[].Admin

CoordCtrl REFERENCE TO
MB_KINEMA-
TICS_COORDINATED

Betriebsart koordinierte Bewegung

arKinCtrl_gb[].CoordMode

AdminStatus REFERENCE TO
MB_KINEMA-
TICS_ADMIN_STATUS

Status Verwaltung der Kinematik

arKinStatus_gb[].Admin

DataStatus REFERENCE TO
MB_KINEMATICS_DATA

Istwerte und Status der Kinematik

arKinStatus_gb[].Data

DiagStatus REFERENCE TO
MB_KINEMATICS_DIAG-
NOSIS

Status Diagnose der Achse

arKinStatus_gb[].Diag

Kinematik-Interface

CXA_MotionInterface.library

5531.07.2020

Fehlerbehandlung

Es ist nicht möglich anstelle der einzelnen Strukturelemente
"AdminCtrl", "CoordCtrl", etc. die kompletten Strukturen über einen
Eingang dem Funktionsbaustein zu übergeben.

Dies wurde gemacht um der Anwender-Applikation spezielle
Erweiterungen zum bestehenden Code zu ermöglichen.

Deshalb werden die benötigten Elemente von "TE_Kinema-
tics_Control_Type01" und "TE_Kinematics_Status_Type01" als
separate Eingänge übergeben.

Zur Performanceoptimierung sind die Strukturen statt als
VAR_IN_OUT als VAR_INPUT mit REFERENCE TO ange-
schlossen. Damit reicht es einmalig die Eingänge zu initialisieren.
Beim zyklischen Aufruf des Funktionsbausteins müssen damit die
Strukturen nicht übergeben werden.

Der Funktionsbaustein überprüft die Eingänge von arKinCtrl_gb[]
und generiert intern die angeforderten Kommandos für die Kine-
matik. Die Ausgänge von arKinStatus_gb[] werden aktualisiert in
Abhängigkeit des Ergebnisses dieser Kommandos.

Zum Beispiel führt das Setzen von
"arKinCtrl_gb[].Admin._OpMode" von "ModeCoordAb" auf "Mode-
CoordPosLinAbs" zu folgendem Ablauf:

■ Alle zugeordneten Achsen werden über das Achs-Interface in
"COORDINATED_MOTION" geschaltet

■ Aktivierung der Funktion ML_KinEnable
■ Warten auf die Quittung, dass die Kinematik bereit ist
■ Aktivierung der Funktion ML_KinMoveLinAbs mit den Soll-

werten von CoordModeCtrl
■ Quittieren des arKinStatus_gb[].Admin._OpModeAck auf

ModeCoordPosLinAbs (Bit MODE_COORD_POS_LIN_ABS)
■ Scannen der Werte in CoordModeCtrl.Position[] und erneutes

Aktivieren des ML_KinMoveLinAbs im Fall von Änderungen

Die Fehlercodes der intern benutzten Funktionsbausteine (z.B.
DL_ReadNode zum Lesen von Datalayer Knoten) und der intern
benutzten Funktionen ((z.B. ML_KinEnable) werden durchge-
reicht. Der Funktionsbaustein kann die folgenden Fehlercodes
erzeugen:

Tab. 38: Fehlercodes des Funktionsbausteins MB_KinematicsInterfacebase

ErrorID Additional1 Additional2 Beschreibung

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230150 Mindestens einer der
Funktionsbaustein-Ein-
gänge ist nicht initial-
isiert

DEVICE_ERROR 16#0A0F0107 16#0C230151 Kinematik ist im
ErrorStop

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C230153 Fehler im Ablauf des
Funktionsbaustein

Kinematik-Interface

CXA_MotionInterface.library

56 31.07.2020

ErrorID Additional1 Additional2 Beschreibung

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230154 Ungültiger Eingang
AdminCtrl.Config.Group.
GroupNo

OTHER_ERROR 16#0A0F0107 16#0C230155 Fehler beim Gruppieren
der Kinematik

RESOURCE_ERROR 16#0A0F0107 16#0C230156 Mit der Methode
Ctrl.Admin.mTriggerMo-
veCmd() wurde in
ModeCoordUngrouped
eine Betriebsart ange-
wählt

IINPUT_INVALID_ERR
OR

16#0A0F0107 16#0C230157 OpMode wird von dem
Funktionsbaustein in
dieser Variante nicht
unterstützt

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C230158 Globale Achs-Pointer
sind ungültig

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C230159 Fehler im Ablauf des
Funktionsbaustein -
Reset

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C23015A Fehler im Ablauf des
Funktionsbaustein -
Stop

1.4.3 Kinematik-Interface - Betriebsarten
1.4.3.1 Überblick

Der folgende Abschnitt beschreibt die Betriebsarten, die vom Kine-
matik-Interface Basis Typ unterstützt werden und die Attribute, die
zugewiesen werden können.

Es gibt drei Methoden um eine Betriebsart zu aktivieren:

■ Auswahl über ENUM-Werte
Zuweisen eines Wertes vom TYPE MB_KINEMATICS_MODE
an
arKinCtrl_gb[].Admin._OpMode:
arKinCtrl_gb[].Admin._OpMode:= ModeCoordPosLi-
nAbs;
- oder -
arKinCtrl_gb[].Admin._OpMode:= ModeCoordAB;

■ Benutzung des Bit-Zugriffs
Setzen eines Bits über die Bit-Zugriffs Funktionalität.
arKinCtrl_gb[].Admin._OpMode-
Bits.MODE_COORD_POS_LIN_ABS:= TRUE;

Kinematik-Interface

CXA_MotionInterface.library

5731.07.2020

Löschen des "_OpMode" durch Bit-Zugriffs Funktionalität ist
auch möglich.
arKinCtrl_gb[].Admin._OpMode-
Bits.MODE_COORD_POS_LIN_ABS := FALSE; Durch das
Bit-Löschen wird MODE_COORD_AB aktiviert.
Auch möglich: arKinCtrl_gb[].Admin._OpMode-
Bits.MODE_COORD_AB := TRUE;

■ Benutzung der Methode Ctrl.Admin.mTriggerMoveCmd()
Siehe auch "DemoKinematicsCommands" in der Vorlage "ctrlX
CORE Axis/Kin-Interface"
Diese Methode setzt sofort in dem Kontext dieses Aufrufes den
Befehl an die Motion-Firmware ab. Damit dies funktioniert,
muss die Kinematik bereits freigegeben sein, z.B. Mode-
CoordStandby und CmdDone abfragen.
Aufruf: arKinCtrl_gb[uiKinIndex].Admin.mTrigger-
MoveCmd(_OpMode:= ModeCoordPosLinAbs,
UserID:='my text');
– Übergabeparameter _Opmode = Wert vom TYPE MB_KINE-

MATICS_MODE
– Übergabeparameter UserID = String (max. 25 byte). Wird als

"Source" übergeben bei Aufruf von Motionkommandos. Bei
Fehlern kann so die Quelle des Befehls identifiziert werden.

– Returnwert der Methode: "cmdID" des abgesetzten Motion-
kommandos. Bei Fehler wird 16#FFFFFFFFFFFFFFFF
zurückgegeben.

Mit der Methode arKinCtrl_gb[uiKinIndex].Admin.mTriggerMo-
veCmd() ist es möglich mehrere gepufferte Befehle in einem
Zyklus abzusetzen. Im Gegensatz zu Achsen sind bei Kinematiken
alle Befehle gepuffert. Deshalb hat die Methode keinen Übergabe-
parameter "Buffered".

Bevor eine Betriebsart aktiviert werden kann, müssen jedem
Attribut zuerst Werte zugewiesen werden. Alle Attribute haben
Standardwerte. Einige haben Werte ungleich Null, während andere
als 0 definiert sind und aufgrund der speziellen Anforderungen
ihnen ein Wert zugewiesen werden muss.

Nur die Attribute (z. B. Position, Geschwindigkeit), die benutzt
werden oder deren Standardwert geändert wurde, müssen dekla-
riert werden, bevor der aktuelle Betriebsartenwechsel ausgeführt
wird.

Kinematik-Interface

CXA_MotionInterface.library

58 31.07.2020

Die Status-Quittung (arKinStatus_gb[].Admin.) für eine
Betriebsart ist wie folgt implementiert.

Beispiel:

− Die Status-Quittung gibt nur dann TRUE zurück, wenn das
Kommando zum Umschalten der Kinematik auf absolutem,
linearem Positionierungsbetrieb ausgeführt wurde:
arKinStatus_gb[].Admin.MODE_COORD_POS_LIN_ABS

− Die Status-Quittung wird sofort beim Absetzen eines neuen
Kommandos zurückgesetzt:
arKinStatus_gb[].Admin.CmdDone
Die Positionierungsbetriebsart wird aktiviert:
arKinCtrl_gb[].Admin._OpMode.b.MODE_COORD_POS_
LIN_ABS
Der Ausgang wird auf TRUE gesetzt, wenn die Kinematik in den
Positionierungsbetrieb schaltet und anfängt sich zu bewegen:
arKinStatus_gb[].Admin.MODE_COORD_POS_LIN_ABS
Hat die Kinematik die Zielkoordinaten erreicht, wird die Status-
quittung gesetzt:
arKinStatus_gb[].Admin.CmdDone

1.4.3.2 Kinematik Bereit

Die Aktivierung dieser Betriebsart schaltet die Kinematik in "Group-
Disabled" und schaltet an allen zugeordneten Achsen das Drehmo-
ment ab. Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl_gb[].Admin._OpMode:= ModeCoordAB;

oder

arKinCtrl_gb[].Admin._OpModeBits.MODE_COORD_AB:=
TRUE;

Das KinematikInterface benutzt intern die Funktion ML_KinDisable
(Bibliothek CXA_Motion) und die Achs-Interface Betriebsart
ModeAb, um die Umschaltung durchzuführen.

Attribute Kinematik Bereit

Tab. 39: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinStatus_gb[] Admin._OpModeAck-
Bits.MODE_COORD_UNGR
OUPED

BOOL entfällt

Kinematik-Interface

CXA_MotionInterface.library

5931.07.2020

1.4.3.3 Kinematik Halt

Die Aktivierung dieser Betriebsart schaltet die Kinematik in "Group-
Disabled" und schaltet alle zugeordneten Achsen in AH (Antrieb
Halt) unter Aufrechterhaltung des Drehmoments. Folgendes Kom-
mando aktiviert die Betriebsart:

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl_gb[].Admin._OpMode := ModeCoordAH;

oder

arKinCtrl_gb[].Admin._OpModeBits.MODE_COORD_AH :=
TRUE;

Das KinematikInterface benutzt intern die Funktion ML_KinDisable
(Bibliothek CXA_Motion) und die Achs-Interface Betriebsart
ModeAH, um die Umschaltung durchzuführen.

Attribute Kinematik Halt

Tab. 40: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinStatus_gb[] Admin._OpModeAck-
Bits.MODE_COORD_UNGR
OUPED

BOOL entfällt

Admin.CmdDone BOOL entfällt

1.4.3.4 Absolutes lineares Positionieren

Die Aktivierung dieser Betriebsart führt eine absolute lineare Bewe-
gung auf vorher festgelegte Zielkoordinaten aus.

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl_gb[].Admin._OpMode := ModeCoordPosLi-
nAbs;

oder

Kinematik-Interface

CXA_MotionInterface.library

60 31.07.2020

arKinCtrl_gb[].Admin._OpMode-
Bits.MODE_COORD_POS_LIN_ABS := TRUE;

Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurück, wenn die Kinematik die Zielkoordinaten
erreicht hat:

arKinStatus_gb[].Admin.CmdDone

Das KinematikInterface benutzt intern die Achs-Interface
Betriebsart ModeCoordinated und die Funktionen ML_KinEnable
und ML_KinMoveLinAbs (Bibliothek CXA_Motion), um die
Umschaltung durchzuführen.

Attribute Absolutes lineares Positionieren

Tab. 41: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.Point[0..15] LREAL 0.0 Ja

CoordMode.DynValues.Velo-
city

LREAL 10.0 Nein

CoordMode.DynValues.Acce-
leration

LREAL 10.0 Nein

CoordMode.DynValues.Dece-
leration

LREAL 10.0 Nein

CoordMode.DynValues.Jer-
kAcc

LREAL 0.0 Nein

CoordMode.DynVa-
lues.JerkDec

LREAL 0.0 Nein

arKin-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_COORD_POS_LI
N_ABS

BOOL entfällt

Admin.CmdDone BOOL entfällt

1.4.3.5 Relatives lineares Positionieren

Die Aktivierung dieser Betriebsart führt eine relative lineare Bewe-
gung auf vorher festgelegte Zielkoordinaten durch Addition der
CoordMode.Point[] zu den aktuellen Istkoordinaten aus.

Folgendes Kommando aktiviert die Betriebsart:

Kinematik-Interface

CXA_MotionInterface.library

6131.07.2020

arKinCtrl_gb[].Admin._OpMode := ModeCoordPos-
LinRel;

oder

arKinCtrl_gb[].Admin._OpMode-
Bits.MODE_COORD_POS_LIN_REL := TRUE;

Die folgende Quittung muss dem Betriebsarten-Kommando folgen
und gibt TRUE zurück, wenn die Kinematik die Zielkoordinaten
erreicht hat:

arKinStatus_gb[].Admin.CmdDone

Das KinematikInterface benutzt intern die Achs-Interface
Betriebsart ModeCoordinated und die Funktionen ML_KinEnable
und ML_KinMoveLinRel (Bibliothek CXA_Motion), um die
Umschaltung durchzuführen.

Attribute Relatives lineares Positionieren

Tab. 42: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.Point[0..15] LREAL 0.0 Ja

CoordMode.DynValues.Velo-
city

LREAL 10.0 Nein

CoordMode.DynValues.Acce-
leration

LREAL 10.0 Nein

CoordMode.DynValues.Dece-
leration

LREAL 10.0 Nein

CoordMode.DynValues.Jer-
kAcc

LREAL 0.0 Nein

CoordMode.DynVa-
lues.JerkDec

LREAL 0.0 Nein

arKin-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_COORD_POS_LI
N_REL

BOOL entfällt

Admin.CmdDone BOOL entfällt

Kinematik-Interface

CXA_MotionInterface.library

62 31.07.2020

1.4.3.6 Betriebsart "Standby"

Wird die Betriebsart von ModeCoordAb oder ModeCoordAH auf
ModeCoordStandby geändert, schaltet das Kinematik-Interface alle
zugeordneten Achsen in AF und gruppiert die Achsen zur Kine-
matik.

Bei Aktivierung dieser Betriebsart in "GroupMoving" werden alle
laufenden Befehle abgebrochen und die Kinematik wird gestoppt
mit dem Zielzustand "GroupStandby".

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl_gb[].Admin._OpMode := ModeCoordStandby;

oder

arKinCtrl_gb[].Admin._OpMode-
Bits.MODE_COORD_STANDBY:= TRUE;

Das KinematikInterface benutzt intern die Achs-Interface
Betriebsart ModeCoordinated und die Funktionen ML_KinEnable
und ML_KinAbort (Bibliothek CXA_Motion), um die Umschaltung
durchzuführen.

Attribute Betriebsart Standby

Tab. 43: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_COORD_STAND
BY

BOOL entfällt

Admin.CmdDone BOOL entfällt

1.4.3.7 Betriebsart "Interrupt"

Bei Aktivierung dieser Betriebsart in "GroupMoving" werden alle
laufenden Befehle unterbrochen und die Kinematik wird gestoppt.
Die Kinematik bleibt aber im Zustand "GroupMoving" bis die Unter-
brechung mit ModeCoordContinue aufgehoben wird.

Wird die Betriebsart von ModeCoordAb oder ModeCoordAH auf
ModeCoordInterrupt geändert, dann schaltet das Kinematik-Inter-
face alle zugeordneten Achsen in AF und gruppiert die Achsen zur
Kinematik.

Kinematik-Interface

CXA_MotionInterface.library

6331.07.2020

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl_gb[].Admin._OpMode := ModeCoordInter-
rupt;

oder

arKinCtrl_gb[].Admin._OpMode-
Bits.MODE_COORD_INTERRUPT:= TRUE;

Das KinematikInterface benutzt intern die Funktion ML_KinInter-
rupt (Bibliothek CXA_Motion), um die Umschaltung durchzuführen.

Attribute Betriebsart "Interrupt"

Tab. 44: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_COORD_INTER-
RUPT

BOOL entfällt

Admin.CmdDone BOOL entfällt

1.4.3.8 Betriebsart "Continue"

Bei Aktivierung dieser Betriebsart wird eine Unterbrechung durch
ModeCoordInterrupt wieder aufgehoben.

Die Anwahl von ModeCoordContinue führt zu einem Fehler, wenn
nicht vorher eine Unterbrechung ausgeführt wurde.

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl_gb[].Admin._OpMode := ModeCoordCon-
tinue;

oder

arKinCtrl_gb[].Admin._OpModeBits.MODE_COORD_CON-
TINUE:= TRUE;

Kinematik-Interface

CXA_MotionInterface.library

64 31.07.2020

Das KinematikInterface benutzt intern die Funktion ML_KinCon-
tinue (Bibliothek CXA_Motion), um die Umschaltung durchzu-
führen.

Attribute Betriebsart "Continue"

Tab. 45: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arAxis-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_COORD_CON-
TINUE

BOOL entfällt

Admin.CmdDone BOOL entfällt

1.4.3.9 Betriebsart "Externer Funktionsbaustein"

Wird die Betriebsart von ModeCoordAb oder ModeCoordAH auf
ModeCoordExternalFB geändert, dann schaltet das Kinematik-
Interface alle zugeordneten Achsen in AF, gruppiert die Achsen zur
Kinematik und wartet auf einen externen Bewegungsbefehl, z. B.
von einer Technologiefunktion.

Wenn sich die Kinematik bereits in einer Betriebsart befindet, dann
wird bei der Aktivierung dieser Betriebsart kein Bewegungsbefehl
vom Kinematik-Interface ausgeführt.

Folgendes Kommando aktiviert die Betriebsart:

arKinCtrl_gb[].Admin._OpMode := ModeCoordExter-
nalFB;

oder

arKinCtrl_gb[].Admin._OpMode-
Bits.MODE_COORD_EXTERNAL_FB:= TRUE;

Das KinematikInterface benutzt intern die Achs-Interface
Betriebsart ModeCoordinated und die Funktion ML_KinEnable
(Bibliothek CXA_Motion), um die Umschaltung durchzuführen.

Kinematik-Interface

CXA_MotionInterface.library

6531.07.2020

"VelocityOverride"

"PCS"

Attribute Betriebsart Externer Funktionsbaustein

Tab. 46: Attribute, die von dieser Betriebsart unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKin-
Status_gb[]

Admin._OpModeAck-
Bits.MODE_COORD_EXTER
NAL_FB

BOOL entfällt

1.4.3.10 Betriebsarten übergreifende Funktionen

Einige Funktionen wirken in allen Positionier Betriebsarten und
werden in diesem Abschnitt beschrieben.

Mit dem Eingang "VelocityOverride" kann eine laufende Bewegung
in der Geschwindigkeit reduziert werden. Erlaubt sind Werte zwi-
schen 0.0% (Kinematik steht) und 100.0% (Bewegung wird mit vor-
gegebener Geschwindigkeit ausgeführt).

Das KinematikInterface benutzt intern die Funktion ML_SetOver-
ride (Bibliothek CXA_Motion), um die Umschaltung durchzuführen.

Tab. 47: Attribute, die von der Funktion "velocity override" unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.VelocityOverride LREAL 100.0 ja

Mit den Eingängen "PCSSetName" und "ActivatePCS" kann ein
Produktkoordinatensystem (PCS) für alle Bewegungskommandos
aktiviert werden.

Eine steigende Flanke an "ActivatePCS" aktiviert die in "PCSSet-
Name" als "Set" oder "Group" eingetragenen PCS Offsets und Ori-
entierungen.

Mit einer fallenden Flanke an "ActivatePCS" wird das PCS wieder
deaktiviert.

Das KinematikInterface benutzt intern die Funktion ML_KinPCSP
(Bibliothek CXA_Motion), um die Umschaltung durchzuführen.

Tab. 48: Attribute, die von der Funktion "PCS" unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.PCSSetName STRING '' nein

arKinCtrl_gb[] CoordMode.ActivatePCS BOOL FALSE ja

Kinematik-Interface

CXA_MotionInterface.library

66 31.07.2020

"PCSTool"

"Blending"

Mit den Eingängen "PCSToolSetName" und "ActivatePCSTool"
kann ein Produktkoordinatensystem (PCS) bezogen auf ein Werk-
zeug für alle Bewegungskommandos aktiviert werden.

Eine steigende Flanke an "ActivatePCSTool" aktiviert die in
PCSToolSetName" als "Set" oder "Group" eingetragenen PCS Off-
sets und Orientierungen.

Mit einer fallenden Flanke an "ActivatePCSTool" wird das PCS
wieder deaktiviert.

Das KinematikInterface benutzt intern die Funktion ML_KinPCS-
ToolP (Bibliothek CXA_Motion), um die Umschaltung durchzu-
führen.

Tab. 49: Attribute, die von der Funktion "PCSTool" unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.PCSToolSet-
Name

STRING '' nein

arKinCtrl_gb[] CoordMode.ActivatePCSTool BOOL FALSE ja

Mit den Eingängen "BlendingStartD1", "BlendingEndD2" und "Acti-
vateBlending" kann ein Überschleifen zwischen zwei Bewegungs-
kommandos aktiviert werden. Ein grundlegender Anwendungsfall
ist das Abrunden der Ecke zwischen zwei linearen Bahnen.

Eine steigende Flanke an "ActivateBlending" aktiviert die in "Blen-
dingStartD1" und "BlendingEndD2" eingetragenen Überschleif-
grenzen.

Mit einer fallenden Flanke an "ActivateBlending" wird das Über-
schleifen wieder deaktiviert.

Das KinematikInterface benutzt intern die Funktion ML_KinBlendP
(Bibliothek CXA_Motion), um die Umschaltung durchzuführen.

Tab. 50: Attribute, die von der Funktion "Blending" unterstützt werden:

Element Name Typ Standard Zyklisch
gescan
nt

arKinCtrl_gb[] CoordMode.BlendingStartD1 LREAL 0.0 nein

arKinCtrl_gb[] CoordMode.BlendingEndD2 LREAL 0.0 nein

arKinCtrl_gb[] CoordMode.ActivateBlending BOOL FALSE ja

1.4.4 Kinematik-Interface - Globale Variablen
Die Bibliothek CXA_MotionInterfaceUser enthält im Ordner "KinIn-
terfaceUser/GlobalVariables" die globale Variablenliste
"Global_Kinematics_Interface".

Kinematik-Interface

CXA_MotionInterface.library

6731.07.2020

Diese Liste enthält die folgenden Strukturen/Variablen:

Tab. 51: VAR_GLOBAL Global_Kinematics_Interface

Name Datentyp Kommentar

arKinCtrl_gb[] ARRAY [] OF TE_KINEMA-
TICS_CONTROL_TYPE01

Kontrollstruktur des Kinematik-
Interface

arKinStatus_gb[] ARRAY [] OF TE_KINEMA-
TICS_STATUS_TYPE01

Statusstruktur des Kinematik-
Interface

arKinIdx_gb ARRAY [] OF UINT Nicht lückende Liste der Kinema-
tiken

uiNofKinematics_gb UINT Anzahl der aktiven Kinematiken

VisuKinematicsNo INT Umschaltung des Kinematics-
index in den Visualisierungen

bClearErrorKin_gb BOOL Globales Fehler löschen

1.4.5 Kinematik-Interface - Strukturen
1.4.5.1 Überblick

Das Kinematik-Interface stellt eine Datenschnittstelle zur komfor-
tablen Ansteuerung der Kinematiken zur Verfügung.

Informationen zu den Datenstrukturen siehe Online-Dokumentation
in den Bibliotheken CXA_MotionInterface im Ordner "KinInterface/
DUTs" bzw. in CXA_MotionInterfaceUser im Ordner "KinInterfa-
ceUser/DUTs".

Das Programm-Template "ctrlX CORE Axis/Kin-Interface" ist so
vorbereitet, dass es durch den Anwender erweiterbar ist bzw. es
sind einige Erweiterungen schon mit eingebaut. Um diese Erweite-
rungen zu ermöglichen, ist es nötig, eigene Strukturen im Anwen-
derprojekt zu definieren, die die Strukturen der Bibliothek erwei-
tern. Die erweiterteten Strukturen sind durch den Präfix "TE_"
gekennzeichnet. Wenn also imProgramm-Template "ctrlX CORE
Axis/Kin-Interface" eine Struktur, z.B. TE_KINEMA-
TICS_ADMIN_STATUS heisst, ist diese eine erweiterte Struktur
der MB_KINEMATICS_ADMIN_STATUS.

Informationen zu der Struktur sind in der Online-Dokumentation
unter dem Namen MB_KINEMATICS_ADMIN_STATUS in der Bib-
liothek CXA_MotionInterface und unter dem Namen TE_KINEMA-
TICS_ADMIN_STATUS in der Bibliothek CXA_MotionInterfaceUser
zu finden.

Kinematik-Interface

CXA_MotionInterface.library

68 31.07.2020

1.4.6 Kinematik-Interface - Beispielprogramm
1.4.6.1 Überblick

In diesem Kapitel soll ein Überblick über die als offener Code ver-
fügbaren Teile des Kinematik-Interface gegeben werden.

Die offenen Programmteile werden mit den folgenden Elementen
geliefert:

■ Das Programmiertemplate "ctrlX CORE Axis/Kin-Interface"
dient als Beispielapplikation für das Kinematik-Interface. Siehe
auch Kapitel 1.2 „MotionInterface - Erstkonfiguration “
auf Seite 2

■ Die Bibliothek CXA_MotionInterfaceUser.library kann durch den
Anwender verändert werden um das Kinematik-Interface an die
jeweilige Applikation anzupassen. Siehe auch Kapitel 1.4.7
„Kinematik-Interface Anwender-Erweiterung “ auf Seite 75.

1.4.6.2 Programmiertemplate "ctrlX CORE Axis/Kin-Interface"

Im Programm "DemoKinematicsCommands" wird der Zugriff auf
das Kinematik-Interface gezeigt.

Das Programmiertemplate "ctrlX CORE Axis/Kin-Interface" deckt
die folgenden Punkte zum Kinematik-Interface ab:

■ PlcProg:
Aufruf des TE_KinInterfaceMainProg() - Initialisierung und Zykli-
scher Aufruf des Kinematik-Interface.

■ MotionProg:
Hier wird die Methode TE_KinInterfaceMainProg.mMotionTask()
aufgerufen. In diesem Takt werden die Istwerte in arKin-
Status_gb[].Data aufgefrischt. Falls die Methode nicht aufge-
rufen wird, werden die Istwerte im Takt des PlcProg aktualisiert.

■ GlobalKinematicsDefines:
Wird nur benötigt, wenn MOTIF_CONFIG.CONFIG_MODE auf
GLOB_VAR eingestellt ist.
Hier werden die Kinematiken als Konstanten vom Typ
MB_AXESGROUPIF_REF definiert und in einer Liste an
TE_KinInterfaceMainProg() übergeben. Die Konstanten
müssen für das eigene Projekt entsprechend angepasst
werden.

■ DemoKinematicsCommands:
Beispielcode mit einer Ablaufprogrammierung und dem
Absetzen von Kinematikkommandos. Dieser Code muss für das
eigene Projekt entsprechend angepasst werden.

■ OverviewKinematics:
Visualisierung zur Bedienung des Kinematik-Interface während
der Inbetriebnahmephase. Durch Klicken auf Felder mit "<<"
kann in weitere Bilder abgetaucht werden.

■ Version_AxisKinInterface:
Änderungshistorie und Disclaimer

Kinematik-Interface

CXA_MotionInterface.library

6931.07.2020

TE_KinInterfaceMainProg

1.4.6.3 Bibliothek CXA_MotionInterfaceUser.library"

Diese offene Bibliothek dient dazu die Funktionsbausteine und
Strukturen der Basisbibliothek CXA_MotionInterface zu erweitern.
Programme und Visualisierungen werden hier zur Verfügung
gestellt. Hier sind auch die globalen Variablen der Interfaces
instanziiert. Mit dieser Bibliothek sind Anpassungen / Erweite-
rungen der Interfaces durch den Anwender möglich.

Wie man die Anpassungen ausführen kann, ist hier Kapitel 1.4.7
„Kinematik-Interface Anwender-Erweiterung “ auf Seite 75
beschrieben

In diesem Kapitel werden die POUs des KinematikInterface aus
dem Ordner "KinInterfaceUser/POUs" beschrieben.

Das Programm TE_KinInterfaceMainProg deckt die folgenden
Punkte ab:

■ Initialisierung des Kinematik-Interface:
Bei Erreichen des Modus "Running" wird das Kinematik-Inter-
face mit Hilfe des Funktionsbausteins TE_KinematicsInitAllKine-
matics initialisiert. Bei erfolgreicher Initialisierung wird der Aus-
gang "InitDone" gesetzt, bei Fehlern der Ausgang "Error".

■ Zyklischer Aufruf des Kinematik-Interface:
Nach erfolgreicher Initialisierung wird der Funktionsbaustein
(FB) TE_KinematicsInterface zyklisch aufgerufen.

■ Methode TE_KinInterfaceMainProg.mMotionTask():
Wird die Methode aus einer schnelleren MotionTask aufgerufen,
werden die Elemente in "arKinStatus_gb[].Data" im schnelleren
Takt aktualisiert. Der Aufruf des FB TE_KinematicsInterface
kann mit Hilfe der Steuer-Variable
"arKinCtrl_gb[].Admin.Config.MotionSync" in die schnellere
Task verschoben werden.
Wird die Methode nicht aufgerufen, erfolgen alle Aktualisie-
rungen im Takt der PLC-Task.

Tab. 52: Schnittstellenvariablen TE_KinInterfaceMainProg

I/O-Typ Name Datentyp Kommentar

VAR_INPUT ClearError BOOL Fehler löschen wird durch eine positive
Flanke an "ClearError" gestartet

KinCfgIdx POINTER TO
ARRAY [] OF
MB_AXES-
GROUPIF_REF

Konfigurationsliste für die Indizes der Kinema-
tiken (nur für Konfigurationsmodus
"GLOB_VAR")

VAR_OUTPU
T

InitDone BOOL Wird gesetzt, wenn das Programm die Initiali-
sierung erfolgreich beendet hat

Error BOOL Zeigt an, dass ein Fehler im Programm aufge-
treten ist

ErrorID ERROR_CODE Kurzer Hinweis zur Fehlerursache

Kinematik-Interface

CXA_MotionInterface.library

70 31.07.2020

TE_KinematicsInitAllKinematics

I/O-Typ Name Datentyp Kommentar

ErrorIdent ERROR_STRUCT Detaillierte Information zum Fehler

Fehlerbehandlung: die Fehlercodes des intern benutzten Funkti-
onsbausteines TE_KinematicsInitAllKinematics werden durchge-
reicht. Das Programm kann die folgenden Fehlercodes erzeugen:

Tab. 53: Fehlercodes des Programmes TE_KinInterfaceMainProg

ErrorID Additional1 Additional2 Beschreibung

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C2301D0 Fehler im Ablauf des
Programmes

Das Programm TE_KinInterfaceMainProg ist zum Integrieren des
Kinematik-Interface in ein bestehendes Programm nützlich.

Siehe auch Example_KinIfApplicationPart im Ordner "KinInterfa-
ceUser/_Examples"

Der Funktionsbaustein TE_KinematicsInitAllKinematics initialisiert
die Kinematik-Interface Strukturen.

Die Initialisierung kann gesteuert werden mit Hilfe der Parameter-
liste "MOTIF_CONFIG".

Es gibt die folgenden Möglichkeiten:

■ AUTO = MOTIF_CONFIG.CONFIG_MODE: Es wird der Data-
layer Knoten "motion/kin/" ausgelesen und die Kinematiken in
der dort gefundenen Reihenfolge in die Kinematik-Interface
Strukturen eingeordnet.

■ GLOB_VAR = MOTIF_CONFIG.CONFIG_MODE: Die Kinema-
tiken werden anhand des globalen Arrays
"KINIF_CONFIG_INDEXES" in die Kinematik-Interface Struk-
turen eingeordnet.

Tab. 54: Schnittstellenvariablen TE_KinematicsInitAllKinematics

I/O-Typ Name Datentyp Kommentar

VAR_INPUT Execute BOOL Die Initialisierung wird durch eine positive
Flanke an "Execute" gestartet

KinCfgIdx POINTER TO
ARRAY [] OF
MB_AXES-
GROUPIF_REF

Konfigurationsliste für die Indizes der Kinema-
tiken (nur für Konfigurationsmodus
"GLOB_VAR")

VAR_OUTPU
T

Done BOOL Wird gesetzt, wenn der FB die Bearbeitung
beendet hat

Active BOOL Wird gesetzt, wenn der FB aktiv ist (nicht im
Leerlaufbetrieb)

Error BOOL Zeigt an, dass ein Fehler im Programm aufge-
treten ist

Kinematik-Interface

CXA_MotionInterface.library

7131.07.2020

I/O-Typ Name Datentyp Kommentar

ErrorID ERROR_CODE Kurzer Hinweis zur Fehlerursache

ErrorIdent ERROR_STRUCT Detaillierte Information zum Fehler

Fehlerbehandlung: die Fehlercodes des intern benutzten Funkti-
onsbausteines MB_KinematicsInit werden durchgereicht. Der
Funktionsbaustein kann die folgenden Fehlercodes erzeugen:

Tab. 55: Fehlercodes des Funktionsbausteines TE_KinematicsInitAllKinematics

ErrorID Additional1 Additional2 Beschreibung

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C2301C0 Eingang KinIndex aus-
serhalb des gültigen
Bereiches
[MB_KINIF_MIN_KIN_I
NDEX..MOTIF_CONFIG
.MAX_KIN_INDEX]

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C2301C1 Unbekannter Konfigura-
tionsmodus
(MOTIF_CONFIG.CFG_
MODE_KIN)

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C2301C2 Pointer KinCfgIdx zur
globalen Variablen ist 0
(MOTIF_CONFIG.CFG_
MODE_KIN =
GLOB_VAR)

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C2301C3 Kinematikindex ausser-
halb des gültigen Berei-
ches
(MOTIF_CONFIG.CFG_
MODE_KIN =
GLOB_VAR)

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C2301C4 Kinematikindex doppelt
(MOTIF_CONFIG.CFG_
MODE_KIN =
GLOB_VAR)

INPUT_RANGE_ERRO
R

16#0A0F0107 16#0C2301C5 Kinematikname doppelt
(MOTIF_CONFIG.CFG_
MODE_KIN =
GLOB_VAR)

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C2301C8 Fehler im Ablauf des
Funktionsbausteines

Das Programm TE_KinInterfaceMainProg ruft diesen Funktions-
baustein TE_KinematicsInitAllKinematics bereits auf.

Kinematik-Interface

CXA_MotionInterface.library

72 31.07.2020

TE_KinematicsInterface Der Funktionsbaustein TE_KinematicsInterface erweitert den
MB_KinInterfaceBase und bearbeitet im zyklischen Betrieb die
Kinematik-Interface Strukturen.

Zur Performanceoptimierung sind die Strukturen statt als
VAR_IN_OUT als VAR_INPUT mit REFERENCE TO ange-
schlossen. Damit reicht es einmalig die Eingänge zu initialisieren.
Dies geschieht in der Methode "mInitExtension". Beim zyklischen
Aufruf des Funktionsbausteins müssen damit die Strukturen nicht
übergeben werden.

Tab. 56: Schnittstellenvariablen TE_KinematicsInterface

I/O-Typ Name Datentyp Kommentar

VAR_INPUT
Steuer-
Struktur

AdminCtrlExt REFERENCE TO
TE_KINEMA-
TICS_ADMINIST-
RATION

Referenz zur Steuer-Struktur Admin

CoordCtrlExt REFERENCE TO
TE_KINEMA-
TICS_COORDI-
NATED

Referenz zur Steuer-Struktur Coordinated

SetupMode REFERENCE TO
TE_KINEMA-
TICS_SETUP_MO
DE

Referenz zur Steuer-Struktur SetupMode

VAR_INPUT
Status-
Struktur

AdminStatusExt REFERENCE TO
TE_KINEMA-
TICS_ADMIN_STA
TUS

Referenz zur Status-Struktur Admin

DataStatusExt REFERENCE TO
TE_KINEMA-
TICS_DATA

Referenz zur Status-Struktur Data

DiagStatusExt REFERENCE TO
TE_KINEMA-
TICS_DIAGNOSIS

Referenz zur Status-Struktur Diag

SetupModeAck REFERENCE TO
TE_KINEMA-
TICS_SETUP_MO
DE_STATUS

Referenz zur Status-Struktur SetupMode

Fehlerbehandlung: die Fehlercodes der intern benutzten Funkti-
onsbausteine werden durchgereicht. Der Funktionsbaustein kann
die folgenden Fehlercodes erzeugen:

Tab. 57: Fehlercodes des Funktionsbausteines TE_KinematicsInterface

ErrorID Additional1 Additional2 Beschreibung

STATE_MACHINE_ERR
OR

16#0A0F0107 16#0C2301E0 Fehler im Ablauf des
Funktionsbausteines

Kinematik-Interface

CXA_MotionInterface.library

7331.07.2020

Das Programm TE_KinInterfaceMainProg ruft diesen Funktions-
baustein TE_KinematicsInterface bereits auf.

1.4.6.4 Kinematik-Interface Visualisierungen
1.4.6.4.1 Überblick

Zum Kinematik-Interface werden Visualisierungsmasken mitgelie-
fert, um ein vorgefertigtes und einfaches Interface zum Einstellen
und Ansteuern der Kinematiken zur Verfügung zu stellen.

Folgende Visualisierungen sind Programmiertemplate "ctrlX CORE
Axis/Kin-Interface" und in der Bibliothek CXA_MotionInterfa-
ceUser.library enthalten:

Beispielprojekt Visualisierungen

Tab. 58: Beispielprojekt Visualisierungen

Visualisierung Beschreibung

OverviewKinematics (im Tem-
plate-Project)

Gesamtüberblick über alle definiertenKinematiken, einschließlich einfa-
cher Diagnosen und Statusinformationen

Kinematics_Overview Zeigt aktuelles Kommando und aktuelle Werte für Koordinaten und
Geschwindigkeit, zusammen mit Navigation zur Positions- und Setup-
Anzeige für die aktuelle Kinematik. Abschalten der Achsen ist ebenfalls
möglich

KinPosition_mode Überwachen des Positionierbetriebs

KinSetup_mode Überwachen des Tippbetriebs

Die folgenden globalen Variablen werden zum Steuern und für den
Zugriff auf Systeminformationen innerhalb der Visualisierungen
benutzt:

■ arKinCtrl_gb[]
■ arKinStatus_gb[]
■ VisuKinematicsNo

1.4.6.4.2 Systemübersicht-Visualisierung

Die OverviewKinematics Visualisierung erlaubt es dem Anwender
jede, im Projekt konfigurierte Kinematik, schnell anzukoppeln.
Zusätzliche Kinematiken können im Offline-Betrieb zur Anzeige
hinzugefügt werden.

Diese Anzeige liefert einen Gesamt-Systemstatus und ermöglicht
das Löschen von Fehlern. Einzelne Kinematik-Bedienelemente lie-
fern den Kinematiknamen, Diagnosen, aktuelle Koordinaten und
Geschwindigkeit zusammen mit den Betriebsarten-Statusanzeigen.

Kinematik-Interface

CXA_MotionInterface.library

74 31.07.2020

Hinzufügen einer Kinematik zur Sys-
temübersicht

Systemübersicht Navigation

Abb. 14: OverviewKinematics

Das Hinzufügen einer Kinematik zur Systemübersicht-Anzeige
erfolgt wie das Hinzufügen einer neuen Visualisierung, durch
Anwählen des entsprechenden Elements und Festlegung der Kine-
matiknummer. Nachfolgend aufgeführte Schritte stellen die Vorge-
hensweise kurz dar:

1. Mit ctrlX PLC Engineering im Offline-Betrieb Doppelklick auf
die "OverviewAllKinematics" Visualisierung.

2. Wählen Sie im Fenster Visualisierungswerkzeuge die Schalt-
fläche „Frame“ an und erzeugen Sie einen Grundriss unter-
halb der letzten Kinematiktabellenzeile, der der Zeilenhöhe
und Zeilenbreite entspricht.

3. Mit rechter Maustaste auf den Frame klicken und "Frameaus-
wahl" aktivieren. Wählen Sie das OverviewOneKinematics-
Element aus dem Visualisierungsauswahlfenster im Ordner
CXA_MotionInterfaceUser/KinInterfaceUser/Visualizations/
SystemOverviewaus.

 Eine komplett neue Systemübersicht Kinematikzeile
erscheint.

4. Nach einem Klick in der neuen Visualisierung tragen Sie im
"Eigenschaften"-Fenster als Wert für m_Input_KinIndex den
Index der definierten Kinematik ein.

5. Das neue Kinematik-Interface für die Systemübersicht kann
nun in der Grösse angepasst und positioniert werden.

6. Übersetzen Sie das SPS-Projekt neu und gehen Sie Online.

Obige Schritte müssen für alle, zusätzlich zum Projekt hinzuge-
fügten Kinematiken wiederholt werden.

Eine Einzelkinematik-Übersichtanzeige ist durch Klicken auf die
Schaltfläche mit zwei Pfeilen "<<", die sich unter der Details-Spalte
in der Kinematiktabelle befindet, erreichbar. Aus der Kinematik-
übersichtanzeige ist die Navigation zur Positions- und Setup-
Betriebsartenanzeige möglich.

Kinematik-Interface

CXA_MotionInterface.library

7531.07.2020

Abb. 15: Systemübersicht Navigation

1.4.7 Kinematik-Interface Anwender-Erweiterung
1.4.7.1 Überblick

Die arKinCtrl_gb[] und arKinStatus_gb[] Strukturen können durch
den Anwender erweitert werden, um das Kinematik-Interface an
spezielle Applikationen anzupassen.

Die arKinCtrl_gb[]- und arKinStatus_gb[]-Strukturen des
Anwender-Interface sind als Basistypen mit dem Präfix "MB_" in
der geschlossenen Bibliothek CXA_MotionInterface.compiled-lib-
rary definiert und daher für den Anwender nicht zugänglich.

Um Erweiterungen zu ermöglichen, ist es nötig, eigene Strukturen
zu definieren, die die Strukturen "MB_" erweitern. Die erweiterteten
Strukturen sind durch den Präfix "TE_" gekennzeichnet und
befinden sich in der offenen Bibliothek CXA_MotionInterfa-
ceUser.library.

Kinematik-Interface

CXA_MotionInterface.library

76 31.07.2020

Empfohlene Vorgehensweise

Arbeitsablauf

ML_GetOverride

Um die Anwendererweiterungen auszuführen, ist es notwendig die
Bibliothek CXA_MotionInterfaceUser.library anzupassen. Zur
Nachvollziehbarkeit ist es notwendig und dringend empfohlen der
angepassten Bibliothek einen neuen Namen zu geben, z.B.
CXA_MotionInterfaceMyCompany.library. Im Folgenden wird als
Bibliotheksname CXA_MotionInterfaceMyCompany.library ver-
wendet.

1. Im Bibliotheksverwalter die CXA_MotionInterfaceUser.library
selektieren. Rechte Maustaste -> "Bibliothek exportieren"
anwählen. Speicherort wählen und einen neuen Namen z.B.
CXA_MotionInterfaceMyCompany.library vergeben. Nacht-
rägliches Umbenennen ist ebenfalls möglich.

2. Mit einer zweiten Instanz von ctrlX PLC Engineering die Bibli-
othek CXA_MotionInterfaceMyCompany.library öffnen. In den
Projektinformationen das Feld "freigegeben" abwählen, die
weiteren Felder anpassen und in den Eigenschaften den
Schlüssel "Placeholder" löschen.

3. Im Anwendungsprogramm (erste Instanz von ctrlX PLC Engi-
neering) im Bibliotheksverwalter die CXA_MotionInterfa-
ceUser.library entfernen und dafür CXA_MotionInterfaceMy-
Company.library einbinden.

4. Anpassungen in der Bibliothek vornehmen. Am Ende aus-
führen: "Datei"->"Projekt speichern und ins Bibiliotheksrepo-
sitory installieren".

5. Im Anwendungsprogramm (erste Instanz von ctrlX PLC Engi-
neering) die Anpassungen testen. Debuggen im Code aus
der Bibliothek ist auch möglich.

6. Schritte 4. und 5. wiederholen bis die Funktion fehlerfrei ist.

Sobald ein Update der CXA_MotionInterfaceUser.library zur Verfü-
gung steht, können Änderungen mit "Projekt"->"Vergleichen" in die
CXA_MotionInterfaceMyCompany.library übernommen werden.

Die CXA_MotionInterfaceUser.library verwendet Fehlercodes mit
"CXA_TABLE". Diese sind in der Produktdokumentation zu finden.
Wenn in den Anwendererweiterungen weitere Fehlercodes benö-
tigt werden, können diese frei definiert werden, müssen aber mit
"USER1_TABLE..USER10_TABLE" gemeldet werden.

Dieser Abschnitt zeigt, wie das Kinematik-Interface durch Hinzu-
fügen der ML_GetOverride-Funktionalität erweitert wird. Die Funk-
tion ML_GetOverride ermöglicht es, den aktuellen VelocityOverride
einer Kinematik abzufragen. Der Sollwert ist bereits in der Basis-
Struktur als "arKinCtrl_gb[].CoordMode.VelocityOverride" vor-
handen.

Die folgenden neuen Ein- und Ausgänge werden definiert:

■ arKinCtrl_gb[].Admin.EnableReadVelocityOverride
■ arKinStatus_gb[].Data.ActVelocityOverride

Kinematik-Interface

CXA_MotionInterface.library

7731.07.2020

Hinweise zur Implementation von
Anwendererweiterungen

Im Programm-Template "ctrlX CORE Axis/Kin-Interface" sind fol-
gende anwenderspezifische Erweiterungen implementiert:

■ Jog-Funktionalität als "SetupMode"

Im Folgenden wird davon ausgegangen, dass die im Programm-
Template "ctrlX CORE Axis/Kin-Interface" bereits vorbereitete
Struktur verwendet wird. Es wird nur beschrieben, welche Ände-
rungen in den dort vorgegebenen POUs notwendig sind.

Die Anwendererweiterungen werden mit Hilfe der objektorientierten
Erweiterungen von ctrlX PLC Engineering implementiert. Dabei
sind einige Besonderheiten zu beachten:

■ Der Funktionsbaustein (FB) TE_KinematicsInterface ist vom
Basis-FB MB_KinematicsInterfaceBase abgeleitet. Über das
Schlüsselwort "SUPER" kann der Basis-FB bzw. Methoden/
Aktionen des Basis-FB aufgerufen werden. Zum Beispiel wird
an diversen Stellen über SUPER^.mSetError(...); die Methode
mSetError des FB MB_KinematicsInterfaceBase aufgerufen um
Fehler in das Diagnosesystem einzutragen

■ Innerhalb des FB TE_KinematicsInterfaceBase kann auf die
Daten von arKinCtrl_gb über die Eingänge AdminCtrlExt,
CoordCtrlExt usw. bzw. auf arKinStatus_gb über AdminStatu-
sExt, DiagStatusExt usw. zugegriffen werden.
Die Eingänge AdminCtrl (ohne Ext) usw. gehören zum Basis-FB
und sollten nicht genutzt werden

■ Die Eingänge des FB TE_KinematicsInterfaceBase sind als
"REFERENCE TO" definiert. In der Methode mInitExtension
werden die Referenzen einmalig initialisiert und müssen dann
beim zyklischen Aufruf des FB nicht mehr übergeben werden

■ Wenn die Basisstrukturen TE_KINEMATICS_CON-
TROL_TYPE01 und TE_KINEMATICS_STATUS_TYPE01 mit
zusätzlichen Unterstrukturen erweitert werden sollen, sind fol-
gende zusätzliche Schritte zu der weiter unten beschriebenen
Vorgehensweise notwendig (siehe SetupMode und SetupMo-
deAck als Beispiele):
– Neue Elemente in TE_KINEMATICS_CONTROL_TYPE01

bzw. TE_KINEMATICS_STATUS_TYPE01 eintragen
– Am FB TE_KinematicsInterfaceBase die zusätzlichen Ein-

gänge als REFERENCE TO hinzufügen
– In der Methode mInitExtension des FB TE_KinematicsInter-

faceBase die Referenzen initialisieren

1.4.7.2 Erweitern der arKinCtrl_gb[]-Struktur

Um die zusätzliche Funktionalität der arKinCtrl_gb[] Struktur hinzu-
zufügen, muss der Anwender eine neue Struktur anlegen, die
Unterstrukturen von den bereits existierenden Struktur ableiten und
dann die neuen Elemente hinzufügen. Im Programm-Template
"ctrlX CORE Axis/Kin-Interface" ist eine Struktur TE_KINEMA-
TICS_CONTROL_TYPE01 und die Unterstrukturen TE_KINEMA-
TICS_ADMINISTRATION usw. bereits vorbereitet.

Kinematik-Interface

CXA_MotionInterface.library

78 31.07.2020

Nehmen Sie die folgenden Schritte vor, um die Funktionalität der
TE_KINEMATICS_ADMINISTRATION Struktur zu erweitern:

1. Mit ctrlX PLC Engineering die Bibliothek CXA_MotionInterfa-
ceMyCompany.library öffnen

2. Öffnen Sie die Struktur TE_KINEMATICS_ADMINISTRA-
TION, Ordner KinInterfaceUser/DUTs/Control.

3. Deklarieren Sie die folgende Variable

■ EnableReadVelocityOverride: BOOL:=TRUE;

1.4.7.3 Erweitern der arKinStatus_gb[] Struktur

Erweitern Sie die arKinStatus_gb[]-Struktur entsprechend den
Schritten in "Erweitern der arKinCtrl_gb[] Struktur". Die folgenden
Schritte stellen die Vorgehensweise kurz dar:

1. Öffnen Sie die Struktur TE_KINEMATICS_DATA, Ordner
KinInterfaceUser/DUTs/Status.

2. Deklarieren Sie die folgende Variable

■ ActVelocityOverride: LREAL;

1.4.7.4 Erweitern des Funktionsbausteines

Der letzte Schritt im Ablauf der Anwender-Erweiterung ist, den
Funktionsbaustein so zu erweitern, dass die neuen Elemente
benutzt werden können.

1. Deklarieren Sie im FB TE_KinematicsInterface die folgende
Variable:

stML_GetOverrideData: ML_GetOverrideData;
2. Im FB TE_KinematicsInterface könnte die Funktion so aus-

programmiert werden:

IF AdminCtrlExt.EnableReadVelocityOverride =
TRUE THEN
stML_GetOverrideData.In.ObjName := AdminCtr-
lExt.Config.Group.KinName;
ML_GetOverride(stML_GetOverrideData); // call
motion function
DataStatusExt.ActVelocityOverride :=
stML_GetOverrideData.Out.Value;
END_IF

3. Übersetzen Sie das Projekt neu und überprüfen Sie es auf
Programmierfehler.

4. Laden Sie das Projekt in die Steuerung.

Kinematik-Interface

CXA_MotionInterface.library

7931.07.2020

Die neuen Eingangs- und Ausgangs-Elemente sind nun ein Teil der
Kinematik-Interface-Struktur und können über die Variablen in
Global_Kinematics_Interface betrachtet werden.

Abb. 16: arKinCtrl_gb und arKinStatus_gb Strukturen mit Anwender-Erweiterungen

1.4.8 HowTo: Typische Anwenderaktivitäten
1.4.8.1 Zugriff auf Kinematikdaten

Die folgenden Daten sind verfügbar (Name = jeweiliger Kinematik-
name):

■ arKinCtrl_gb[Name.GroupNo] => Steuerstruktur des Kinematik-
Interface

■ arKinStatus_gb[Name.GroupNo] => Statusstruktur des Kine-
matik-Interface

■ arKinStatus_gb[Name.GroupNo].Data => Istwerte und Statusin-
formationen

■

Kinematik-Interface

CXA_MotionInterface.library

80 31.07.2020

Azyklische Zugriffe auf Kinematikdaten sind über den ctrlX Data-
Layer mit den Funktionsbausteinen DL_ReadNode und DL_Write-
Node möglich.

1.4.8.2 Anpassung der maximalen Kinematikanzahl

Die Kinematikstrukturen können an die tatsächlich vorhandene
Kinematikanzahl angepasst werden.

Die Bibliothek CXA_MotionInterfaceUser erlaubt Anpassungen
über die Bibliotheksparameter "MOTIF_CONFIG".

Mit der Konstanten "MAX_KIN_INDEX" kann die Grösse der Struk-
turen passend zur Anwendung gewählt werden.

Beim Kinematik-Interface ist die untere Array-Grenze fest auf die
Konstante "MB_KINIF_MIN_KIN_INDEX" mit dem Wert Null fest-
gelegt.

1.4.8.3 Anpassung der Zuordnung Kinematikname<>KinematikIndex

Das KinematikInterface arbeitet mit einem KinematikIndex zur
Adressierung in den Kinematikstrukturen. Die Motion-Firmware
arbeitet mit dem Kinematiknamen. Die Zuordnung Kinematik-
name<>KinematikIndex kann mit verschiedenen Methoden
erfolgen.

Die Bibliothek CXA_MotionInterfaceUser erlaubt eine Auswahl der
Methode über die Bibliotheksparameter "MOTIF_CONFIG".

Zuordnung Kinematikname<>KinematikIndex in
MOTIF_CONFIG.CFG_MODE_KIN

■ AUTO: Auslesen des DataLayer Knotens "motion/kin" und
Zuweisung des KinematikIndex in der hier vorgefundenen Rei-
henfolge

■ GLOB_VAR: in der Application wird eine Liste von "MB_AXES-
GROUPIF_REF" definiert und an das Programm "TE_KinInter-
faceMainProg" übergeben. Siehe "GlobalKinematicsDefines" im
Programm-Template "ctrlX CORE Axis/Kin-Interface".

1.4.8.4 Kinematik hinzufügen

Eine Kinematik kann in der Bedienoberfläche im Bereich Motion
angelegt werden oder auch z.B. aus dem SPS-Programm erzeugt
werden.

Für eine hinzugefügte Kinematik muss ggf. eine Initialisierung
bestimmter Strukturelemente des Kinematik-Interface vorge-
nommen werden. Dies geschieht bei Verwendung des Programm-
Template "ctrlX CORE Axis/Kin-Interface" automatisch beim Errei-
chen des Zustandes "Running". Die Zuordnung
Kinematikname<>KinematikIndex muss ergänzt werden, wenn
MOTIF_CONFIG.CFG_MODE_KIN = GLOB_VAR konfiguriert ist.
Siehe auch oben weitere Informationen auf Seite 80.

Kinematik-Interface

CXA_MotionInterface.library

8131.07.2020

1.4.8.5 Kinematik entfernen/umbenennen

Eine vorhandene Kinematik kann in der Bedienoberfläche im
Bereich Motion oder über diverse Schnittstellen gelöscht bzw.
umbenannt werden.

Wird eine Kinematik umbenannt, muss der Zugriff über die Control-
u. Statusstrukturen "arKinCtrl_gb[geänderterKinematik-
name.GroupNo]" und "arKinStatus_gb[geänderterKinematik-
name.GroupNo]" innerhalb des SPS-Programmes angepasst
werden.

Die Zuordnung Kinematikname<>KinematikIndex muss angepasst
werden, wenn MOTIF_CONFIG.CFG_MODE_KIN = GLOB_VAR
konfiguriert ist. Siehe auch oben weitere Informationen
auf Seite 80.

1.4.8.6 Kinematik-Interface Erweiterungen

Das Kinematik-Interface erlaubt fast beliebige Erweiterungen der
Kinematik-Interface-Strukturen. Es können zusätzliche Unterstruk-
turen eingefügt und auch die vorhandenen Unterstrukturen erwei-
tert werden.

Die folgenden Strukturelemente sind als Anwendererweiterungen
in der KinCtrl-Struktur beispielhaft programmiert:

■ SetupMode: zusätzliche Unterstruktur in der KinCtrl-Struktur
– Enable: Freigabe Einrichtbetrieb
– JogMode: Einstellung inkrementell oder kontinuierlich tippen
– JogPlus[]: Tippen +, für jede Koordinate einzeln wählbar
– JogMinus[]: Tippen -, für jede Koordinate einzeln wählbar
– Increment: Schrittweite bei inkrementellem Tippen
– DirectionVector[]: Bewegungsrichtung beim Vertippen auf

der Bahn
– JogVectorPlus: Tippen +, für die gesamte Kinematik
– JogVectorMinus: Tippen -, für die gesamte Kinematik
– DynValues: Tipp(brems)beschleunigung und Ruck.

Die folgenden Strukturelemente sind als Anwendererweiterungen
in der KinStatus-Struktur beispielhaft programmiert:

■ SetupMode: zusätzliche Unterstruktur in der KinStatus-Struktur
– EnableAck: Einrichtbetrieb ist aktiv

Der Code zu diesen Erweiterungen ist in den Aktionen des Baust-
eins TE_KinematicsInterface() im Ordner "KinInterfaceUser/POUS"
zu finden. Die dazugehörigen Strukturen sind in den Ordnern
"KinInterfaceUser/DUTs/Control" und "KinInterfaceUser/DUTs/
Status" zu finden.

IMC-Interface

CXA_MotionInterface.library

82 31.07.2020

Es können eigene Erweiterungen hinzugefügt werden (siehe dazu
 , Seite).

1.5 IMC-Interface
1.5.1 Einführung und Übersicht

Das IMC-Interface (Interface-Motion-Control) enthält in der Kon-
trollstruktur Steuersignale für die App rexroth-motion und in der
Statusstruktur werden Statusbits und Diagnoseinformationen der
App rexroth-motion zur Verfügung gestellt.

Funktionen des IMC-Interfaces

■ Anwahl des Modus "Configuration" oder "Running"
■ führt den Befehl "Clear Error" für die App rexroth-motion aus
■ führt "RetriggerOpMode" aus, um es den Benutzern zu ermögli-

chen, den gewählten Betriebsmodus erneut auszuführen
■ Bei einer Modusumschaltung über eine externe Instanz (z.B.

Web-Interface) setzt das Imc-Interface den Ausgang "Passiv-
eMode" und der angewählte Modus wird nicht angesteuert.
Mit "RetriggerOpMode" oder durch Zurückschalten in den ange-
wählten Modus wird der "PassiveMode" wieder verlassen

Die folgende Abbildung zeigt das Benutzerinterface mit den Daten-
strukturen des IMC-Interface:

Abb. 17: Datenstrukturen IMC-Interface

Weitere Informationen zu den Datenstrukturen siehe Online-Doku-
mentation in der Bibliothek CXA_MotionInterface im Ordner "ImcIn-
terface/DUTs".

IMC-Interface

CXA_MotionInterface.library

8331.07.2020

Um das Imc-Interface benutzen zu können, muss nur das Pro-
gramm "MB_ImcInterface" zyklisch aufgerufen werden, z.B. in der
PlcTask. Bei der Verwendung des Achs- bzw Kinematik-Interface
ist der Programmaufruf bereits integriert.

In der Bibliothek CXA_MotionInterface ist im Ordner "ImcInterface/
_Examples" ein Anwendungsbeispiel zum Imc-Interface enthalten.

Dieses Beispiel zeigt, wie ImcStatus und ImcCtrl beim Erstellen
von Achsen verwendet werden können.

	‎1 CXA_MotionInterface.library‎
	‎1.1 Einführung und Übersicht‎
	‎1.2 MotionInterface - Erstkonfiguration‎
	‎1.3 Achs-Interface‎
	‎1.3.1 Einführung und Übersicht‎
	‎1.3.2 Achs-Interface - Funktionsbausteine‎
	‎1.3.2.1 MB_AxisInit‎
	‎1.3.2.2 MB_AxisInterfaceBase‎

	‎1.3.3 Achs-Interface - Betriebsarten‎
	‎1.3.3.1 Überblick‎
	‎1.3.3.2 Antrieb Bereit‎
	‎1.3.3.3 Antrieb Halt‎
	‎1.3.3.4 Absolutes Positionieren‎
	‎1.3.3.5 Relatives Positionieren‎
	‎1.3.3.6 Additives Positionieren‎
	‎1.3.3.7 Betriebsart "Robot-Control"‎
	‎1.3.3.8 Betriebsart "Gantry"‎
	‎1.3.3.9 Betriebsart "Externer Funktionsbaustein"‎
	‎1.3.3.10 Benutzerdefinierte Betriebsarten‎

	‎1.3.4 Achs-Interface - Globale Variablen‎
	‎1.3.5 Achs-Interface - Strukturen‎
	‎1.3.5.1 Überblick‎

	‎1.3.6 Achs-Interface - Beispielprogramm‎
	‎1.3.6.1 Überblick‎
	‎1.3.6.2 Programmiertemplate "ctrlX CORE Axis/Kin-Interface"‎
	‎1.3.6.3 Bibliothek CXA_MotionInterfaceUser.library"‎
	‎1.3.6.4 Achs-Interface Visualisierungen‎
	‎1.3.6.4.1 Überblick‎
	‎1.3.6.4.2 Systemübersicht-Visualisierung‎

	‎1.3.7 Achs-Interface Anwender-Erweiterung‎
	‎1.3.7.1 Überblick‎
	‎1.3.7.2 Erweitern der arAxisCtrl_gb[]-Struktur‎
	‎1.3.7.3 Erweitern der arAxisStatus_gb[] Struktur‎
	‎1.3.7.4 Erweitern des Funktionsbausteines‎
	‎1.3.7.5 Anwendung der benutzerdefinierten Betriebsarten‎

	‎1.3.8 HowTo: Typische Anwenderaktivitäten‎
	‎1.3.8.1 Zugriff auf Achsdaten‎
	‎1.3.8.2 Anpassung der maximalen Achsanzahl‎
	‎1.3.8.3 Anpassung der Zuordnung Achsname<>AchsIndex‎
	‎1.3.8.4 Achse hinzufügen‎
	‎1.3.8.5 Achse entfernen/umbenennen‎
	‎1.3.8.6 Achs-Interface Erweiterungen‎

	‎1.4 Kinematik-Interface‎
	‎1.4.1 Einführung und Übersicht‎
	‎1.4.2 Kinematik-Interface - Funktionsbausteine‎
	‎1.4.2.1 MB_KinematicsInit‎
	‎1.4.2.2 MB_KinematicsInterfaceBase‎

	‎1.4.3 Kinematik-Interface - Betriebsarten‎
	‎1.4.3.1 Überblick‎
	‎1.4.3.2 Kinematik Bereit‎
	‎1.4.3.3 Kinematik Halt‎
	‎1.4.3.4 Absolutes lineares Positionieren‎
	‎1.4.3.5 Relatives lineares Positionieren‎
	‎1.4.3.6 Betriebsart "Standby"‎
	‎1.4.3.7 Betriebsart "Interrupt"‎
	‎1.4.3.8 Betriebsart "Continue"‎
	‎1.4.3.9 Betriebsart "Externer Funktionsbaustein"‎
	‎1.4.3.10 Betriebsarten übergreifende Funktionen‎

	‎1.4.4 Kinematik-Interface - Globale Variablen‎
	‎1.4.5 Kinematik-Interface - Strukturen‎
	‎1.4.5.1 Überblick‎

	‎1.4.6 Kinematik-Interface - Beispielprogramm‎
	‎1.4.6.1 Überblick‎
	‎1.4.6.2 Programmiertemplate "ctrlX CORE Axis/Kin-Interface"‎
	‎1.4.6.3 Bibliothek CXA_MotionInterfaceUser.library"‎
	‎1.4.6.4 Kinematik-Interface Visualisierungen‎
	‎1.4.6.4.1 Überblick‎
	‎1.4.6.4.2 Systemübersicht-Visualisierung‎

	‎1.4.7 Kinematik-Interface Anwender-Erweiterung‎
	‎1.4.7.1 Überblick‎
	‎1.4.7.2 Erweitern der arKinCtrl_gb[]-Struktur‎
	‎1.4.7.3 Erweitern der arKinStatus_gb[] Struktur‎
	‎1.4.7.4 Erweitern des Funktionsbausteines‎

	‎1.4.8 HowTo: Typische Anwenderaktivitäten‎
	‎1.4.8.1 Zugriff auf Kinematikdaten‎
	‎1.4.8.2 Anpassung der maximalen Kinematikanzahl‎
	‎1.4.8.3 Anpassung der Zuordnung Kinematikname<>KinematikIndex‎
	‎1.4.8.4 Kinematik hinzufügen‎
	‎1.4.8.5 Kinematik entfernen/umbenennen‎
	‎1.4.8.6 Kinematik-Interface Erweiterungen‎

	‎1.5 IMC-Interface‎
	‎1.5.1 Einführung und Übersicht‎

