
README.md 5/11/2023

1 / 16

KVD
Persistent custom nodes for the ctrlX Data Layer.

The app provides population of

explicit (configured) nodes of any kind by configuration.
implicit (dynamic) Variable nodes, created by any Data Layer client programmatically (create-on-write).

A reliable and a high performance data storage is included. The persistence is based on a key/value database
(KVD).

Quick Start
Install the KVD app, open ctrlX UI inside your preferred browser.
Navigate to Settings->Data Layer.
Discover the samples nodes /samples/kvd/*.

Usage
Configure explicit nodes or root nodes for implicit (dynamic) child nodes (.../*, .../**), which should be
populated to the Data Layer's address space. This can be done by editing configuration file nodes.json.

Interaction with any Data Layer client

Read a node's value

Read a node by calling the corresponding read method. The argument has to be the address of the node.

Write a node's value

Create the node of nodeClass Variable by calling the corresponding write method. The argument has to be a
Variant holding a value of any data type.

create-on-write

Create a none existing implicit node as a child node of an implicit root node, by initially writing a value to it.
This can be done by just writing any value, which creates a implicit node of nodeClass Variable with given
data type.

The initial data type of the node will be set and persistent. Subsequent writes to the node's value will fail, if
the data type of the written data type does not match exactly.

Create a node

Creating a node by calling the corresponding create method is NOT SUPPORTED. Please use create-on-write.

Delete a node

README.md 5/11/2023

2 / 16

Delete a node by calling the corresponding remove method to remove the node. The argument has to be the
address of the node.

Only supported for implicit nodes.

Interaction with Node-RED
Please see README-NODE-RED.md

Configuration Editors
The KVD app can be configured with the App data editor or via WebDAV.

The KVD app configuration files can be found there:

Settings -> Manage app data -> Key Value Database configuration

WARNING:

PLEASE DO NOT EDIT, DELETE OR RENAME ANY FILE INSIDE THE FOLDER WHERE THE UNDERLYING DB IS
LOCATED. THIS IS FOLDER db BY DEFAULT.

Reset

WARNING:

YOU CAN RESET THE KVD PERSISTANCE BY JUST REMOVING THE DB FOLDER. THE APP IS RESTARTED AND
ALL DATA WILL LOSS AND RESETTET TO DEFAULT!

Configuration via App data editor

You can edit settings.json, nodes.json and any other there the setup the KVD app. Changes will be applied
immediately.

Configuration via WebDAV

Please use any WebDAV client to configure the KVD app.

We recommend to use WinSCP.

Create a new site with protocol WebDAV, choose TLS encryption, enter your ip and credentials, finally login:

file:///e%3A/Workspace/ctrlx/web.kvd/README-NODE-RED.md
https://winscp.net/

README.md 5/11/2023

3 / 16

On the remote side on the left, click Open Directory <CTRL + o> and edit the Remote directory to:

/solutions/webdav/appdata

Now you should see the ctrlX appdata storage:

README.md 5/11/2023

4 / 16

Navigate to folder kvd for configuration.

You can edit settings.json, nodes.json and any other there the setup the KVD app. Changes will be applied
immediately.

Diagnostics
On any configuration error, the KVD app doesn't startup and you won't see any nodes in the ctrlX Data Layer
tree. If this is the case please check the KVD app errors in Diagnostics for error details (e.g. schema validation
failed, etc.).

Open the ctrlX UI, navigate to Diagnostics->Logbook, click on the settings button on the right and enable
option Show system messages.

Click on Filter and enable Unit snap.rexroth-kvd.kvd.service:

README.md 5/11/2023

5 / 16

If any error occured, refresh the log to see detailed error informations:

If the KVD app is starting up normally, it should look like:

README.md 5/11/2023

6 / 16

General configuration
Edit the file settings.json, to change the general behaviour of the app.

The settings.json file is located in ctrlX appdata storage directory KVD on your ctrlX.

db

Sets the path of the underlying database. Defaults to kvd/db.

IMPORTANT:

PLEASE USE REMOVABLE MEDIA FOR DB STORAGE IF POSSIBLE

We recommend to use any mounted removable media (e.g. SD card) for db storage location, to keep the life
time of the internal system storage.

Example: removable media

{
 "db": "/media/mmcblk1p1/db",
 ...
}

readonly

Sets the configured node values to be readonly, which means write operations are forbidden and will fail.
Defaults to false.

verbose

Enables verbose trace. Defaults to false.

Nodes configuration

README.md 5/11/2023

7 / 16

The node configuration file nodes.json specifies a set of nodes to be registered and persisted to the Data
Layer.

The nodes.json file is located in ctrlX appdata storage directory KVD on your ctrlX.

The configuration supports explicit and implicit (dynamic) root nodes.

description

The description of the configuration.

types

The list of types (nodeClass Type)to be registered.

nodes

The list of nodes to be populated. The app supports hierarchical structuring nodes (nodeClass Folder,
Collection, Resource) and variable nodes (nodeClass Variable).

address [required]

The address of the node. This can be either an absolute path (leaf), a single (/*) or double wild carded(/**)
ending address used to specify a implicit node.

Volatile (memory-only) nodes

Configure a node's value to be volatile (memory-only) and not persistent by adding the extension key
autoSave to the node's metadata, with it's value set to string "false".

TIP: You can also set volatile to value true as a shortcut.

Example: Volatile nodes

nodes: [
 {
 "address": "mycompany/europe/myplants/plant1/volatile_temperature",
 "type": "int32",
 "metadata": {
 "nodeClass": "Variable",
 "extensions": [
 {
 "key": "autoSave",
 "value": "false"
 }
]
 }
 },
 ...
 {
 "address": "mycompany/europe/myplants/plant2/volatile_temperature",

README.md 5/11/2023

8 / 16

 "type": "int32",
 "volatile": true,
 },
 ...
]

The volatile feature is only supported for explicit nodes.

Read-only nodes

Configure a node's value to be read-only (e.g. any not writable constant value) by adding the operations write
to the node's metadata, with it's value set to false.

TIP: You can also set mode to string "read-only" as a shortcut.

Examples: read-only nodes

nodes: [
 {
 "address": "mycompany/europe/myplants/plant1/myconstant1,
 "type": "int32",
 "value": 42,
 "metadata": {
 "nodeClass": "Variable",
 "operations": {
 "write": false
 },
 "description": "This is a read-only variable node, it's value can't be
written."
 }
 },
 ...
 {
 "address": "mycompany/europe/myplants/plant1/myconstant2,
 "type": "int32",
 "value": 42,
 "mode": "read-only",
 "metadata": {
 "nodeClass": "Variable",
 "description": "This is a read-only variable node, it's value can't be
written."
 }
 }
 ...
]

Explicit nodes

README.md 5/11/2023

9 / 16

A explicit node has an absolute address. A explicit node can't be deleted (independendly from allowed
operations by the nodeClass).

Example: explicit node

nodes: [
 {
 "address": "mycompany/europe/myplants/plant1/temperature",
 "type": "int32",
 "metadata": {
 "nodeClass": "Variable",
 }
 },
 ...
]

Implicit nodes

A implicit node can be created (create-on-write) and removed. A implicit root node defines the entry of an
implicit branch, allowing creation and deletion of child nodes only in next level (/*) or all levels (/**).

Examples: Implicit root node

This implicit root node allows creation and deletion of child nodes only on next hierarchical level:

{
 "address": "mycompany/europe/myplants/plant1/*",
},

This implicit root node allows creation and deletion of child nodes of the full underlying branch (all
hierarchical levels):

{
 "address": "mycompany/europe/myplants/plant1/**",
}

value

The initially preset value of the node. Defaults to any falsy value (0, false, "")

Supported values types:

string,number,integer,boolean,array,object

README.md 5/11/2023

10 / 16

Examples: value

A Variable node of numeric value kind:

{
 ...
 "value": 42,
}

A Variable node of string value kind:

{
 ...
 "value": "42",
}

metadata

The metadata of the node which tells the clients something about the node's identity, allowed operations on
it and more.

User access restrictions:

To configure a full read-only node branch or restrict access, please use the Data Layer user access restriction.

nodeClass

Sets the class of the node. Defaults to Variable.

Allowed operations like read, write, create, delete, browse can be executed by any client, depending on the
nodeClass of the node.

TIP: You can also set nodeClass to node instead using the metadata as a shortcut.

Supported node classes:

Variable,Resource,Collection,Folder,Type

The following table shows the allowed operations by nodeClass:

Operation Variable Resource Collection Folder Type

read X X X X

write X X

create X X

https://docs.automation.boschrexroth.com/doc/2276122339/introduction-and-overview/latest/en/

README.md 5/11/2023

11 / 16

Operation Variable Resource Collection Folder Type

delete X

browse X X X X X

unit

The unit of the node. Defaults to an empty string.

TIP: You can also set unit to node instead using the metadata as a shortcut.

displayName

The display name of the node. Defaults to address.

TIP: You can also set displayName to node instead using the metadata as a shortcut.

displayFormat

The display format of the node. Defaults to Auto.

TIP: You can also set displayFormat to node instead using the metadata as a shortcut.

Supported display formats:

Auto,Bin,Oct,Dec,Hex

description

The description of the node. Defaults to an empty string.

TIP: You can also set description to node instead using the metadata as a shortcut.

descriptionUrl

The description url of the node. Defaults to an empty string.

TIP: You can also set descriptionUrl to node instead using the metadata as a shortcut.

Example: Minimal metadata

Numeric Variable node (int32):

nodes: [
 {
 "address": "mycompany/europe/myplants/plant1/temperature1",
 "type": "int32",
 "metadata": {
 "nodeClass": "Variable"

README.md 5/11/2023

12 / 16

 }
 },
 ...
 {
 "address": "mycompany/europe/myplants/plant1/temperature2",
 "type": "int32",
 "nodeClass": "Variable"
 },
 ...
]

Examples: All metadata

Numeric Variable node (int32):

nodes: [
 {
 "address": "mycompany/europe/myplants/plant1/temperature",
 "type": "int32",
 "value": 42,
 "metadata": {
 "nodeClass": "Variable",
 "displayName": "This is a velocity variable node for binary experts.",
 "displayFormat": "Bin",
 "unit": "m/s",
 "description": "This is a variable node with all metadata.",
 "descriptionUrl": "https://www.boschrexroth.com/"
 }
 },
 ...
]

Flatbuffers Variable node of a built-in type

nodes: [
 {
 "address": "mycompany/europe/myplants/plant1/my-server-settings",
 "type": "types/datalayer/server-settings",
 "metadata": {
 "nodeClass": "Variable",
 "description": "This node is of built-in flatbuffers type 'server-
settings'.",
 }
 },
 ...
]

README.md 5/11/2023

13 / 16

Flatbuffers Variable node of a custom type:

nodes: [
 {
 "address": "mycompany/europe/myplants/plant1/my-inertial-value",
 "type": "types/inertial-value",
 "metadata": {
 "nodeClass": "Variable",
 "description": "This node is of the custom flatbuffers type
'types/inertial-value."
 },
 ...
]

type

The data type of the node's value. Defaults to unknown.

Scalars

type description

unknown unknown datatype (not initialized, empty, null)

bool8 bool (8 bit)

int8 signed int (8 bit)

uint8 unsigned int (8 bit)

int16 signed int (16 bit)

uint16 unsigned int (16 bit)

int32 signed int (32 bit)

uint32 unsigned int (32 bit)

int64 signed int (64 bit)

uint64 unsigned int (64 bit)

float, float32 float (32 bit)

double, float64 double (64 bit)

string string (UTF-8)

timestamp timestamp (FILETIME) 64 bit 100ns since 1.1.1601 (UTC)

flatbuffers bytes as a complex data type encoded as a flatbuffer

raw raw bytes

Arrays

README.md 5/11/2023

14 / 16

type description

arbool8 array of bool (8 bit)

arint8 array of signed int (8 bit)

aruint8 array of unsigned int (8 bit)

arint16 array of signed int (16 bit)

aruint16 array of unsigned int (16 bit)

arint32 array of signed int (32 bit)

aruint32 array of unsigned int (32 bit)

arint64 array of signed int (64 bit)

aruint64 array of unsigned int (64 bit)

arfloat, arfloat32 array of float (32 bit)

ardouble, arfloat64 array of float (64 bit)

arstring array of string (UTF-8)

artimestamp array of timestamps (FILETIME) 64 bit 100ns since 1.1.1601 (UTC)

Once the Variable node is initially created with it's configured value type, the written value type has to match
the configured one exactly, otherwise an error code is returned to the client performing the write operation.

Built-in Flatbuffers types

To configure a node of a built-in flatbuffers type, set the type of the node to the address of the referred
target type:

types/...

Example: Built-in flatbuffers

Flatbuffers Variable node of a built-in flatbuffers type:

nodes: [
 {
 ...
 "type": "types/datalayer/server-settings",
 "metadata": {
 "nodeClass": "Variable"
 }
 },
 ...
]

README.md 5/11/2023

15 / 16

Custom Flatbuffers types

To register a custom flatbuffers, configure a node of nodeClass Type and add it to the types section.

Set the address of the type to the address on which instance nodes should refer to it:

types/...

Example:

types/inertial-value

Set the type to the name of the corresponding compiled flatbuffers file (*.bfbs).

Upload the *.bfbs file to appdata location:

 kvd/bfbs

Example: Custom flatbuffers

Type node of a custom flatbuffers type:

types: [
 {
 "address": "types/inertial-value",
 "type": "inertial-value.bfbs",
 "metadata": {
 "nodeClass": "Type"
 }
 },
 ...
]

A Variable node this type can be specified (value optional):

nodes: [
 {
 "address": "kvd/samples/variables/flatbuffers/inertial-value",
 "type": "types/inertial-value",
 "value": {
 "x": 1,
 "y": 2,
 "z": 3
 },

README.md 5/11/2023

16 / 16

 "metadata": {
 "nodeClass": "Variable",
 "description": "This node is of the custom flatbuffers type
'types/inertial-value."
 }
 },
 ...
]

Configure Data Layer model nodes
Please see README-MODELS.md

Maintainers
See MAINTAINERS

file:///e%3A/Workspace/ctrlx/web.kvd/README-MODELS.md
file:///e%3A/Workspace/ctrlx/web.kvd/MAINTAINERS

